
## Monique G P Van Der Wijst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7908824/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Gut mucosa dissociation protocols influence cell type proportions and single-cell gene expression levels. Scientific Reports, 2022, 12, .                                                           | 1.6 | 23        |
| 2  | Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread,<br>context-specific gene expression regulation upon pathogenic exposure. Nature Communications, 2022,<br>13, . | 5.8 | 39        |
| 3  | Genetic, parental and lifestyle factors influence telomere length. Communications Biology, 2022, 5, .                                                                                               | 2.0 | 23        |
| 4  | Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Science Translational Medicine, 2021, 13, eabh2624.                                     | 5.8 | 155       |
| 5  | Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics, 2021, 53, 1300-1310.                         | 9.4 | 590       |
| 6  | Deconvolution of bulk blood eQTL effects into immune cell subpopulations. BMC Bioinformatics, 2020, 21, 243.                                                                                        | 1.2 | 38        |
| 7  | Integrating GWAS with bulk and single-cell RNA-sequencing reveals a role for LY86 in the anti-Candida host response. PLoS Pathogens, 2020, 16, e1008408.                                            | 2.1 | 18        |
| 8  | The single-cell eQTLGen consortium. ELife, 2020, 9, .                                                                                                                                               | 2.8 | 150       |
| 9  | Title is missing!. , 2020, 16, e1008408.                                                                                                                                                            |     | 0         |
| 10 | Title is missing!. , 2020, 16, e1008408.                                                                                                                                                            |     | 0         |
| 11 | Title is missing!. , 2020, 16, e1008408.                                                                                                                                                            |     | 0         |
| 12 | Title is missing!. , 2020, 16, e1008408.                                                                                                                                                            |     | 0         |
| 13 | Title is missing!. , 2020, 16, e1008408.                                                                                                                                                            |     | Ο         |
| 14 | Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nature Genetics, 2018, 50, 493-497.                                                                       | 9.4 | 289       |
| 15 | An integrative approach for building personalized gene regulatory networks for precision medicine.<br>Genome Medicine, 2018, 10, 96.                                                                | 3.6 | 49        |
| 16 | Importance of Metal-Ion Exchange for the Biological Activity of Coordination Complexes of the Biomimetic Ligand N4Py. Inorganic Chemistry, 2018, 57, 7748-7756.                                     | 1.9 | 23        |
| 17 | Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG<br>methylation, as potential regulator of mitochondrial gene expression. Scientific Reports, 2017, 7, 177.   | 1.6 | 72        |
| 18 | Regulation of mitochondrial gene expression the epigenetic enigma. Frontiers in Bioscience -<br>Landmark. 2017. 22. 1099-1113.                                                                      | 3.0 | 69        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Re-expression of Selected Epigenetically Silenced Candidate Tumor Suppressor Genes in Cervical<br>Cancer by TET2-directed Demethylation. Molecular Therapy, 2016, 24, 536-547.  | 3.7 | 33        |
| 20 | Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA denverse de demethylase or DNA dehydroxymethylase. Epigenetics, 2015, 10, 671-676. | 1.3 | 72        |
| 21 | Mitochondrial epigenetics: an overlooked layer of regulation?. Trends in Genetics, 2015, 31, 353-356.                                                                           | 2.9 | 85        |
| 22 | Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion.<br>Molecular Oncology, 2015, 9, 1259-1273.                                       | 2.1 | 17        |
| 23 | Prolonged re-expression of the hypermethylated gene <i>EPB41L3</i> using artificial transcription factors and epigenetic drugs. Epigenetics, 2015, 10, 384-396.                 | 1.3 | 28        |
| 24 | Nrf2, the master redox switch: The Achilles' heel of ovarian cancer?. Biochimica Et Biophysica Acta:<br>Reviews on Cancer, 2014, 1846, 494-509.                                 | 3.3 | 36        |
| 25 | Efficient Nuclear DNA Cleavage in Human Cancer Cells by Synthetic Bleomycin Mimics. ACS Chemical<br>Biology, 2014, 9, 1044-1051.                                                | 1.6 | 23        |