Min Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7908416/publications.pdf Version: 2024-02-01

MIN MIN

#	Article	IF	CITATIONS
1	Impact of diurnal variability and meteorological factors on the PM2.5 - AOD relationship: Implications for PM2.5 remote sensing. Environmental Pollution, 2017, 221, 94-104.	7.5	178
2	Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. Journal of Meteorological Research, 2017, 31, 708-719.	2.4	114
3	Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environmental Pollution, 2017, 230, 1030-1039.	7.5	111
4	Latest Progress of the Chinese Meteorological Satellite Program and Core Data Processing Technologies. Advances in Atmospheric Sciences, 2019, 36, 1027-1045.	4.3	106
5	Estimating Summertime Precipitation from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2557-2570.	6.3	91
6	Aerosol-induced changes in the vertical structure of precipitation: a perspective of TRMM precipitation radar. Atmospheric Chemistry and Physics, 2018, 18, 13329-13343.	4.9	88
7	Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China. Atmospheric Environment, 2015, 113, 1-9.	4.1	80
8	Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sensing of Environment, 2020, 239, 111616.	11.0	64
9	Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China. Atmospheric Environment, 2011, 45, 4735-4744.	4.1	63
10	Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8827-8839.	6.3	58
11	Mesoscale Convective Systems in the Asian Monsoon Region From Advanced Himawari Imager: Algorithms and Preliminary Results. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2210-2234.	3.3	57
12	Development of a 50-year daily surface solar radiation dataset over China. Science China Earth Sciences, 2013, 56, 1555-1565.	5.2	49
13	On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 142, 25-36.	2.3	44
14	The Cloud Top Distribution and Diurnal Variation of Clouds Over East Asia: Preliminary Results From Advanced Himawari Imager. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3724-3739.	3.3	41
15	Characteristics of atmospheric aerosol optical depth variation in China during 1993–2012. Atmospheric Environment, 2015, 119, 82-94.	4.1	38
16	Comparison of Cloud Properties from Himawari-8 and FengYun-4A Geostationary Satellite Radiometers with MODIS Cloud Retrievals. Remote Sensing, 2019, 11, 1703.	4.0	38
17	On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data. Atmospheric Environment, 2016, 141, 186-196.	4.1	31
18	An efficient algorithm for calculating photosynthetically active radiation with MODIS products. Remote Sensing of Environment, 2017, 194, 146-154.	11.0	29

Μίν Μίν

#	Article	IF	CITATIONS
19	Midlatitude cirrus cloud radiative forcing over China. Journal of Geophysical Research, 2010, 115, .	3.3	25
20	Warming effect of dust aerosols modulated by overlapping clouds below. Atmospheric Environment, 2017, 166, 393-402.	4.1	23
21	A multilayer cloud detection algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sensing of Environment, 2019, 227, 1-11.	11.0	22
22	Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements. Remote Sensing, 2019, 11, 383.	4.0	20
23	First Effort for Constructing a Direct Solar Radiation Data Set in China for Solar Energy Applications. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1724-1734.	3.3	19
24	Comparison of Cloudâ€Top Property Retrievals From Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and Radiosonde. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032683.	3.3	19
25	Effects and Applications of Satellite Radiometer 2.25- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math </inline-formula> m Channel on Cloud Property Retrievals. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 5207-5216.	6.3	16
26	Refined Typhoon Geometric Center Derived From a High Spatiotemporal Resolution Geostationary Satellite Imaging System. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 499-503.	3.1	15
27	Cirrus cloud macrophysical and optical properties over North China from CALIOP measurements. Advances in Atmospheric Sciences, 2011, 28, 653-664.	4.3	14
28	Field validation of the GLASS land surface broadband emissivity database using pseudo-invariant sand dune sites in northern China. International Journal of Digital Earth, 2013, 6, 96-112.	3.9	14
29	On-Orbit Spatial Quality Evaluation and Image Restoration of FengYun-3C/MERSI. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 6847-6858.	6.3	14
30	An investigation of the implications of lunar illumination spectral changes for Day/Night Bandâ€based cloud property retrieval due to lunar phase transition. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9233-9244.	3.3	14
31	Estimate of daytime single-layer cloud base height from advanced baseline imager measurements. Remote Sensing of Environment, 2022, 274, 112970.	11.0	13
32	A novel hyperspectral lunar irradiance model based on ROLO and mean equigonal albedo. Optik, 2017, 142, 657-664.	2.9	11
33	Radianceâ€Based Evaluation of WRF Cloud Properties Over East Asia: Direct Comparison With FYâ€⊋E Observations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4613-4629.	3.3	11
34	An Operational Precipitable Water Vapor Retrieval Algorithm for Fengyun-2F/VLSSR Using a Modified Three-Band Physical Split-Window Method. Journal of Meteorological Research, 2019, 33, 276-288.	2.4	11
35	Deep Learning-Based Radar Composite Reflectivity Factor Estimations from Fengyun-4A Geostationary Satellite Observations. Remote Sensing, 2021, 13, 2229.	4.0	11
36	A method for monitoring the on-orbit performance of a satellite sensor infrared window band using oceanic drifters. International Journal of Remote Sensing, 2014, 35, 382-400.	2.9	9

Μίν Μίν

#	Article	IF	CITATIONS
37	Estimation of Forest Canopy Height in Hilly Areas Using Lidar Waveform Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 1559-1571.	4.9	9
38	Radiometric Cross-Calibration for Multiple Sensors with the Moon as an Intermediate Reference. Journal of Meteorological Research, 2019, 33, 925-933.	2.4	8
39	DCNet: A Deformable Convolutional Cloud Detection Network for Remote Sensing Imagery. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	8
40	Convective Initiation Nowcasting Over China From Fengyun-4A Measurements Based on TV-L ₁ Optical Flow and BP_Adaboost Neural Network Algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4284-4296.	4.9	7
41	A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 247, 106954.	2.3	7
42	Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm. Optics Communications, 2018, 417, 89-96.	2.1	6
43	Characteristics of Pre-summer Daytime Cloud Regimes over Coastal South China from the Himawari-8 Satellite. Advances in Atmospheric Sciences, 2022, 39, 2008-2023.	4.3	6
44	Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 210, 180-188.	2.3	5
45	Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia. Sensors, 2020, 20, 2394.	3.8	5
46	Diurnal variations of cloud optical properties during day-time over China based on Himawari-8 satellite retrievals. Atmospheric Environment, 2022, 277, 119065.	4.1	5
47	The Radiance Differences between Wavelength and Wavenumber Spaces in Convolving Hyperspectral Infrared Sounder Spectrum to Broadband for Intercomparison. Remote Sensing, 2019, 11, 1177.	4.0	4
48	Can the Earth–Moon Distance Influence the Accuracy of Lunar Irradiance with the Plane-Parallel Assumption in Atmospheric Radiative Transfer at Night?. Journals of the Atmospheric Sciences, 2021, 78, 2459-2469.	1.7	4
49	Effects of Linear Calibration Errors at Low-Temperature End of Thermal Infrared Band: Lesson From Failures in Cloud Top Property Retrieval of FengYun-4A Geostationary Satellite. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	4
50	Information Content of Ice Cloud Properties from Multi-Spectral, -Angle and -Polarization Observations. Remote Sensing, 2020, 12, 2548.	4.0	3
51	Studying Soil Moisture and Temperature on the Tibetan Plateau: Initial Results of an Integrated, Multiscale Observatory. IEEE Geoscience and Remote Sensing Magazine, 2020, 8, 18-36.	9.6	3
52	On-orbit calibration analysis of FY-4A AGRI solar bands. , 2018, , .		3
53	A Dataset of Overshooting Cloud Top from 12-Year CloudSat/CALIOP Joint Observations. Remote Sensing, 2022, 14, 2417.	4.0	3
54	Selection and Characterization of Glaciers on the Tibetan Plateau as Potential Pseudoinvariant Calibration Sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 424-436.	4.9	2

#	Article	IF	CITATIONS
55	Nonnegligible Diurnal and Long-Term Variation Characteristics of the Calibration Biases in Fengyun-4A/AGRI Infrared Channels Based on the Oceanic Drifter Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	2
56	Performance evaluation for on-orbit modulation transfer function of FengYun-3C medium resolution spectral imager (MERSI) using polar ice and snow. Proceedings of SPIE, 2014, , .	0.8	0