Guofeng Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790838/publications.pdf Version: 2024-02-01

CHOFENC XIE

#	Article	IF	CITATIONS
1	Thermal Conductivity of Amorphous Materials. Advanced Functional Materials, 2020, 30, 1903829.	14.9	149
2	Monolayer SnP ₃ : an excellent p-type thermoelectric material. Nanoscale, 2019, 11, 19923-19932.	5.6	119
3	Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. Npj Computational Materials, 2018, 4, .	8.7	99
4	A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials. Scientific Reports, 2014, 4, 5085.	3.3	91
5	Phonon coherence and its effect on thermal conductivity of nanostructures. Advances in Physics: X, 2018, 3, 1480417.	4.1	82
6	KAgX (X = S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 36102-36109.	8.0	68
7	α-Ag ₂ S: A Ductile Thermoelectric Material with High <i>ZT</i> . ACS Omega, 2020, 5, 5796-5804.	3.5	64
8	Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction. Materials Today Physics, 2019, 8, 56-61.	6.0	55
9	High Thermoelectric Performance of New Two-Dimensional IV–VI Compounds: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 1812-1819.	3.1	51
10	Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires. Physical Chemistry Chemical Physics, 2013, 15, 14647.	2.8	48
11	Phonon mean free path spectrum and thermal conductivity for Silâ^'xGex nanowires. Applied Physics Letters, 2014, 104, .	3.3	46
12	First-principles study of thermal transport properties in the two- and three-dimensional forms of Bi ₂ O ₂ Se. Physical Chemistry Chemical Physics, 2019, 21, 10931-10938.	2.8	43
13	Thermal Conductivity: Thermal Conductivity of Amorphous Materials (Adv. Funct. Mater. 8/2020). Advanced Functional Materials, 2020, 30, 2070048.	14.9	30
14	Size and boundary scattering controlled contribution of spectral phonons to the thermal conductivity in graphene ribbons. Journal of Applied Physics, 2014, 115, .	2.5	28
15	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	21.0	25
16	Thermoelectric Properties of Hexagonal M2C3 (M = As, Sb, and Bi) Monolayers from First-Principles Calculations. Nanomaterials, 2019, 9, 597.	4.1	22
17	Remarkable suppression of thermal conductivity by point defects in MoS 2 nanoribbons. Applied Surface Science, 2016, 360, 107-112.	6.1	19
18	Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons. Physical Chemistry Chemical Physics, 2015, 17, 8822-8827.	2.8	16

GUOFENG XIE

#	Article	IF	CITATIONS
19	Thermal transport in lithium-ion battery: A micro perspective for thermal management. Frontiers of Physics, 2022, 17, 1.	5.0	14
20	Significant enhancement of the thermoelectric properties of CaP ₃ through reducing the dimensionality. Materials Advances, 2020, 1, 3322-3332.	5.4	14
21	Significant reduction of thermal conductivity in silicon nanowires by shell doping. RSC Advances, 2013, 3, 26074.	3.6	13
22	Modification of thermal transport in few-layer MoS ₂ by atomic-level defect engineering. Nanoscale, 2021, 13, 11561-11567.	5.6	12
23	Probing thermal transport across amorphous region embedded in a single crystalline silicon nanowire. Scientific Reports, 2020, 10, 821.	3.3	7
24	First-Principles Calculations on Thermoelectric Properties of Layered Transition Metal Phosphides MP2 (M = Ni, Pd, Pt). Journal of Electronic Materials, 2021, 50, 2510-2520.	2.2	6
25	Enhanced thermoelectric properties in two-dimensional monolayer Si ₂ BN by adsorbing halogen atoms*. Chinese Physics B, 2021, 30, 037304.	1.4	6
26	Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance. Nanotechnology, 2022, 33, 215402.	2.6	5
27	Thermoelectric Properties of Arsenic Triphosphide (AsP3) Monolayer: A First-Principles Study. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	2
28	Proton radiation damage in SrTiO3thin film by computer simulation. Radiation Effects and Defects in Solids, 2013, 168, 959-966.	1.2	1
29	Upcycling Silicon Photovoltaic Waste into Thermoelectrics (Adv. Mater. 19/2022). Advanced Materials, 2022, 34, .	21.0	0