
Safoora Mirmohamadsadeghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907938/publications.pdf

Version: 2024-02-01

Safoora

#	Article	IF	CITATIONS
1	Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood. Energy, 2022, 239, 122361.	4.5	8
2	Efficient ethanol production from rice straw through cellulose restructuring and high solids loading fermentation by Mucor indicus. Journal of Cleaner Production, 2022, 339, 130702.	4.6	9
3	Improved environmental and socio-economic impacts of ethanol production from rice straw. Biomass Conversion and Biorefinery, 2021, 11, 1909-1920.	2.9	8
4	Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity. Renewable and Sustainable Energy Reviews, 2021, 135, 110173.	8.2	128
5	High efficient ethanol production from corn stover by modified mild alkaline pretreatment. Renewable Energy, 2021, 170, 714-723.	4.3	22
6	An optimal biorefinery development for pectin and biofuels production from orange wastes without enzyme consumption. Chemical Engineering Research and Design, 2021, 152, 513-526.	2.7	14
7	Dry/Solid-State Fermentative Ethanol Production. , 2020, , 60-67.		0
8	A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies. Renewable Energy, 2020, 146, 1204-1220.	4.3	185
9	A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies. Renewable Energy, 2020, 146, 1392-1407.	4.3	144
10	Biorefinery development based on whole safflower plant. Renewable Energy, 2020, 152, 399-408.	4.3	23
11	Recovery of silica from rice straw and husk. , 2020, , 411-433.		13
12	Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy, 2019, 172, 545-554.	4.5	82
13	Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 2019, 7, 100202.	1.5	110
14	Improvement of dry simultaneous saccharification and fermentation of rice straw to high concentration ethanol by sodium carbonate pretreatment. Energy, 2019, 167, 654-660.	4.5	40
15	High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energy Conversion and Management, 2019, 182, 520-529.	4.4	46
16	Bioenergy production from sweet sorghum stalks via a biorefinery perspective. Applied Microbiology and Biotechnology, 2018, 102, 3425-3438.	1.7	25
17	Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel, 2018, 218, 41-48.	3.4	63
18	Ethanol Yield and Morphology Change of Mucor indicus in the Presence of Nickel Ions. Journal of Biobased Materials and Bioenergy, 2018, 12, 143-147.	0.1	0

Safoora

#	Article	IF	CITATIONS
19	Energy Recovery Together with Amorphous Nanosilica Production from Rice Straw via Dry Anaerobic Digestion. BioResources, 2017, 13, .	0.5	13
20	Improvement of Solid-State Biogas Production from Wood by Concentrated Phosphoric Acid Pretreatment. BioResources, 2016, 11, .	0.5	23
21	Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresource Technology, 2016, 209, 386-390.	4.8	60
22	Modeling of Highâ€Concentration Ethanol Production by <i>Mucor hiemalis</i> . Chemical Engineering and Technology, 2015, 38, 1802-1808.	0.9	6
23	Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment. BioMed Research International, 2014, 2014, 1-6.	0.9	69
24	An efficient method for clay modification and its application for phenol removal from wastewater. Applied Clay Science, 2012, 59-60, 8-12.	2.6	35