Anthony K Cheetham

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7907935/anthony-k-cheetham-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 16,746 126 190 h-index g-index citations papers 19,029 10.3 209 7.05 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
190	Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	3
189	Lattice Dynamics in the NASICON NaZr(PO) Solid Electrolyte from Temperature-Dependent Neutron Diffraction, NMR, and Ab Initio Computational Studies <i>Chemistry of Materials</i> , 2022 , 34, 4029-	4038	О
188	Phase stability and sodium-vacancy orderings in a NaSICON electrode. <i>Journal of Materials Chemistry A</i> , 2021 , 10, 209-217	13	4
187	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. <i>Science</i> , 2021 , 374, 621-625	33.3	29
186	Why are Double Perovskite Iodides so Rare?. Journal of Physical Chemistry C, 2021, 125, 11756-11764	3.8	7
185	Layered Double Perovskites. Annual Review of Materials Research, 2021, 51, 351-380	12.8	7
184	Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. <i>Chemical Engineering Journal</i> , 2021 , 403, 126333	14.7	31
183	Chemical Control of Spin-Orbit Coupling and Charge Transfer in Vacancy-Ordered Ruthenium(IV) Halide Perovskites. <i>Angewandte Chemie</i> , 2021 , 133, 5244-5248	3.6	
182	A chemical map of NaSICON electrode materials for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 281-292	13	38
181	Chemical Control of Spin-Orbit Coupling and Charge Transfer in Vacancy-Ordered Ruthenium(IV) Halide Perovskites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5184-5188	16.4	5
180	Titanium Niobium Oxide: From Discovery to Application in Fast-Charging Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2021 , 33, 4-18	9.6	47
179	Guest-mediated phase transitions in a flexible pillared-layered metal-organic framework under high-pressure. <i>Chemical Science</i> , 2021 , 12, 13793-13801	9.4	1
178	Direct Pyrolysis of a Manganese-Triazolate Metal-Organic Framework into Air-Stable Manganese Nitride Nanoparticles. <i>Advanced Science</i> , 2021 , 8, 2003212	13.6	3
177	Tribute to D. D. Sarma. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 19049-19052	3.8	
176	Intermarriage of Halide Perovskites and Metal-Organic Framework Crystals. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19434-19449	16.4	30
175	Intermarriage of Halide Perovskites and Metal-Organic Framework Crystals. <i>Angewandte Chemie</i> , 2020 , 132, 19602-19617	3.6	4
174	Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. <i>Nano Research</i> , 2020 , 13, 2289-2298	10	27

173	Perovskite-related ReO3-type structures. <i>Nature Reviews Materials</i> , 2020 , 5, 196-213	73.3	33
172	Structural Diversity and Magnetic Properties of Hybrid Ruthenium Halide Perovskites and Related Compounds. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8974-8981	16.4	10
171	Understanding the Structural and Electronic Properties of Bismuth Trihalides and Related Compounds. <i>Inorganic Chemistry</i> , 2020 , 59, 3377-3386	5.1	4
170	Tunable Luminescence in Hybrid Cu(I) and Ag(I) Iodides. <i>Inorganic Chemistry</i> , 2020 , 59, 15487-15494	5.1	3
169	Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides. Journal of the American Chemical Society, 2020 , 142, 13582-13589	16.4	59
168	Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. <i>Nature Communications</i> , 2020 , 11, 3917	17.4	21
167	Phase Behavior in Rhombohedral NaSiCON Electrolytes and Electrodes. <i>Chemistry of Materials</i> , 2020 , 32, 7908-7920	9.6	21
166	Structural Diversity and Magnetic Properties of Hybrid Ruthenium Halide Perovskites and Related Compounds. <i>Angewandte Chemie</i> , 2020 , 132, 9059-9066	3.6	8
165	The capricious nature of iodine catenation in I excess, perovskite-derived hybrid Pt(iv) compounds. <i>Chemical Communications</i> , 2019 , 55, 588-591	5.8	11
164	Micro-/Mesoporous Materials: Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating (Adv. Mater. 25/2019). <i>Advanced Materials</i> , 2019 , 31, 1970182	24	
163	3D-Printing of Pure Metal©rganic Framework Monoliths 2019 , 1, 147-153		44
162	Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating. <i>Advanced Materials</i> , 2019 , 31, e1901124	24	12
161	Ab initio computation for solid-state P NMR of inorganic phosphates: revisiting X-ray structures. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 10070-10074	3.6	9
160	Identifying the best metalBrganic frameworks and unravelling different mechanisms for the separation of pentane isomers. <i>Molecular Systems Design and Engineering</i> , 2019 , 4, 609-615	4.6	7
159	Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. <i>Nature Communications</i> , 2019 , 10, 1340	17.4	59
158	Enhanced visible light absorption for lead-free double perovskite CsAgSbBr. <i>Chemical Communications</i> , 2019 , 55, 3721-3724	5.8	65
157	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1803768	21.8	143
156	Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19099-19109	16.4	85

155	Insights into the electronic structure of OsO2 using soft and hard x-ray photoelectron spectroscopy in combination with density functional theory. <i>Physical Review Materials</i> , 2019 , 3,	3.2	7
154	Polymorphism in M(HPO) (M = V, Al, Ga) compounds with the perovskite-related ReO structure. <i>Chemical Communications</i> , 2019 , 55, 2964-2967	5.8	10
153	Unraveling the Interfacial Structure-Performance Correlation of Flexible Metal-Organic Framework Membranes on Polymeric Substrates. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5570-5577	9.5	20
152	Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF-Guest Polyhedra. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6130-6136	16.4	62
151	Thermodynamic and Kinetic Effects in the Crystallization of Metal-Organic Frameworks. <i>Accounts of Chemical Research</i> , 2018 , 51, 659-667	24.3	83
150	Pore closure in zeolitic imidazolate frameworks under mechanical pressure. <i>Chemical Science</i> , 2018 , 9, 1654-1660	9.4	41
149	MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. <i>Chemical Communications</i> , 2018 , 54, 5268-5288	5.8	177
148	Hypophosphite hybrid perovskites: a platform for unconventional tilts and shifts. <i>Chemical Communications</i> , 2018 , 54, 3751-3754	5.8	40
147	Hydrogen Bonding Controls the Structural Evolution in Perovskite-Related Hybrid Platinum(IV) lodides. <i>Inorganic Chemistry</i> , 2018 , 57, 10375-10382	5.1	31
146	Janus Membranes: Creating Asymmetry for Energy Efficiency. <i>Advanced Materials</i> , 2018 , 30, e1801495	24	135
145	Mixed X-Site Formate-Hypophosphite Hybrid Perovskites. <i>Chemistry - A European Journal</i> , 2018 , 24, 113	3 0: 9:81 1 3	313;
144	Synthesis, crystal structure, magnetic and electronic properties of the caesium-based transition metal halide Cs3Fe2Br9. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3573-3577	7.1	12
143	The competition between mechanical stability and charge carrier mobility in MA-based hybrid perovskites: insight from DFT. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12252-12259	7.1	26
142	Janus Membrane: Janus Membranes: Creating Asymmetry for Energy Efficiency (Adv. Mater. 43/2018). <i>Advanced Materials</i> , 2018 , 30, 1870328	24	5
141	Octahedral connectivity and its role in determining the phase stabilities and electronic structures of low-dimensional, perovskite-related iodoplumbates. <i>APL Materials</i> , 2018 , 6, 114202	5.7	15
140	Fundamental Carrier Lifetime Exceeding 1 µs in Cs2AgBiBr6 Double Perovskite. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800464	4.6	114
139	An Unusual Phase Transition Driven by Vibrational Entropy Changes in a Hybrid OrganicIhorganic Perovskite. <i>Angewandte Chemie</i> , 2018 , 130, 9070-9074	3.6	4
138	An Unusual Phase Transition Driven by Vibrational Entropy Changes in a Hybrid Organic-Inorganic Perovskite. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8932-8936	16.4	30

(2016-2017)

137	Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors. <i>Nanoscale Horizons</i> , 2017 , 2, 99-105	10.8	183
136	Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH3NH3)2AgBiBr6. <i>Chemistry of Materials</i> , 2017 , 29, 1089-1094	9.6	217
135	Chemically diverse and multifunctional hybrid organic[horganic perovskites. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	608
134	A New Look at the Structural and Magnetic Properties of Potassium Neptunate KNpO Combining XRD, XANES Spectroscopy, and Low-Temperature Heat Capacity. <i>Inorganic Chemistry</i> , 2017 , 56, 5839-58	:50 ¹	4
133	Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: a single crystal X-ray diffraction and computational study. <i>Chemical Communications</i> , 2017 , 53, 7537-754	4 ō .8	31
132	Hidden negative linear compressibility in lithium l-tartrate. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 3544-3549	3.6	16
131	[Am]Mn(HPOO): A New Family of Hybrid Perovskites Based on the Hypophosphite Ligand. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16999-17002	16.4	59
130	Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. <i>ChemSusChem</i> , 2017 , 10, 3683-3683	8.3	
129	Synthesis and Characterization of the Rare-Earth Hybrid Double Perovskites: (CHNH)KGdCl and (CHNH)KYCl. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5015-5020	6.4	45
128	High-Throughput Computational Screening of Metal®rganic Frameworks for Thiol Capture. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 22208-22215	3.8	25
127	Understanding of Electrochemical Mechanisms for CO Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). <i>ACS Nano</i> , 2017 , 11, 10825-10833	16.7	236
126	How Strong Is the Hydrogen Bond in Hybrid Perovskites?. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 6154-6159	6.4	110
125	Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. <i>ChemSusChem</i> , 2017 , 10, 3740-3745	8.3	55
124	Functional conductive nanomaterials polymerisation in nano-channels: PEDOT in a MOF. <i>Materials Horizons</i> , 2017 , 4, 64-71	14.4	48
123	Oriented Two-Dimensional Porous Organic Cage Crystals. <i>Angewandte Chemie</i> , 2017 , 129, 9519-9523	3.6	8
122	Oriented Two-Dimensional Porous Organic Cage Crystals. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9391-9395	16.4	23
121	Coordination environments and Econjugation in dense lithium coordination polymers. CrystEngComm, 2016 , 18, 398-406	3.3	11
120	Interplay between defects, disorder and flexibility in metal-organic frameworks. <i>Nature Chemistry</i> , 2016 , 9, 11-16	17.6	256

119	Structure prediction: Encoding evolution of porous solids. <i>Nature Chemistry</i> , 2016 , 9, 6-8	17.6	6
118	Organised chaos: entropy in hybrid inorganic-organic systems and other materials. <i>Chemical Science</i> , 2016 , 7, 6316-6324	9.4	49
117	Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets. <i>Chemical Communications</i> , 2016 , 52, 10474-7	5.8	78
116	Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12025-12029	13	176
115	Microscopic origin of entropy-driven polymorphism in hybrid organic-inorganic perovskite materials. <i>Physical Review B</i> , 2016 , 94,	3.3	39
114	Switchable electric polarization and ferroelectric domains in a metal-organic-framework. <i>Npj Quantum Materials</i> , 2016 , 1,	5	84
113	In Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal®rganic Frameworks. <i>Angewandte Chemie</i> , 2016 , 128, 2052-2056	3.6	14
112	Role of AmineLavity Interactions in Determining the Structure and Mechanical Properties of the Ferroelectric Hybrid Perovskite [NH3NH2]Zn(HCOO)3. <i>Chemistry of Materials</i> , 2016 , 28, 312-317	9.6	52
111	Melt-Quenched Glasses of Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3484-92	16.4	161
110	Structural Properties and Charge Distribution of the Sodium Uranium, Neptunium, and Plutonium Ternary Oxides: A Combined X-ray Diffraction and XANES Study. <i>Inorganic Chemistry</i> , 2016 , 55, 1569-79	5.1	20
109	Magnetic catalysts as nanoactuators to achieve simultaneous momentum-transfer and continuous-flow hydrogen production. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4280-4287	13	30
108	Defects and disorder in metal organic frameworks. <i>Dalton Transactions</i> , 2016 , 45, 4113-26	4.3	125
107	A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling. <i>Dalton Transactions</i> , 2016 , 45, 4258-68	4.3	28
106	Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. Journal of Materials Chemistry A, 2016 , 4, 270-279	13	57
105	Mixed-linker solid solutions of functionalized pillared-layer MOFs - adjusting structural flexibility, gas sorption, and thermal responsiveness. <i>Dalton Transactions</i> , 2016 , 45, 4230-41	4.3	29
104	Porous Organic Cage Thin Films and Molecular-Sieving Membranes. <i>Advanced Materials</i> , 2016 , 28, 2629-	374	209
103	In Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2012-6	16.4	47
102	Molecular Sieves: Porous Organic Cage Thin Films and Molecular-Sieving Membranes (Adv. Mater. 13/2016). <i>Advanced Materials</i> , 2016 , 28, 2652-2652	24	

(2015-2016)

101	Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9. <i>APL Materials</i> , 2016 , 4, 031101	5.7	91
100	Resolving the Physical Origin of Octahedral Tilting in Halide Perovskites. <i>Chemistry of Materials</i> , 2016 , 28, 4259-4266	9.6	163
99	Transition metal coordination complexes of chrysazin. CrystEngComm, 2016, 18, 5121-5129	3.3	4
98	Disorder and polymorphism in Cu(II)-polyoxometalate complexes: [Cu1.5(H2O)7.5PW12O40][4.75H2O, cis- & trans-[Cu2(H2O)10SiW12O40][6H2O. <i>CrystEngComm</i> , 2016 , 18, 5327-5332	3.3	3
97	Tuneable mechanical and dynamical properties in the ferroelectric perovskite solid solution [NHNH] [NHOH] Zn(HCOO). <i>Chemical Science</i> , 2016 , 7, 5108-5112	9.4	31
96	MBsbauer spectroscopy, magnetization, magnetic susceptibility, and low temperature heat capacity of ENaNpOII <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 086002	1.8	3
95	The synthesis, structure and electronic properties of a lead-free hybrid inorganic@rganic double perovskite (MA)2KBiCl6 (MA = methylammonium). <i>Materials Horizons</i> , 2016 , 3, 328-332	14.4	221
94	Mechanical properties of organicIhorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18450-18455	13	139
93	Deep red emission in Eu2+-activated Sr4(PO4)2O phosphors for blue-pumped white LEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7356-7362	7.1	16
92	X-ray Diffraction, MBsbauer Spectroscopy, Magnetic Susceptibility, and Specific Heat Investigations of Na4NpO5 and Na5NpO6. <i>Inorganic Chemistry</i> , 2015 , 54, 4556-64	5.1	12
91	Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF-4. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6447-51	16.4	66
90	Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF-4. <i>Angewandte Chemie</i> , 2015 , 127, 6547-6551	3.6	20
89	Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6428-31	16.4	61
88	A new look at the structural properties of trisodium uranate Na3UO4. <i>Inorganic Chemistry</i> , 2015 , 54, 3552-61	5.1	20
87	An extended Tolerance Factor approach for organic-inorganic perovskites. <i>Chemical Science</i> , 2015 , 6, 3430-3433	9.4	439
86	Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. <i>Chemical Communications</i> , 2015 , 51, 6434-7	5.8	146
85	Hybrid glasses from strong and fragile metal-organic framework liquids. <i>Nature Communications</i> , 2015 , 6, 8079	17.4	164
84	Role of entropic effects in controlling the polymorphism in formate ABX3 metal-organic frameworks. <i>Chemical Communications</i> , 2015 , 51, 15538-41	5.8	59

83	Mechanical Properties of a Calcium Dietary Supplement, Calcium Fumarate Trihydrate. <i>Inorganic Chemistry</i> , 2015 , 54, 11186-92	5.1	12
82	Synthesis, structure and optical properties of cerium-doped calcium barium phosphate has novel blue-green phosphor for solid-state lighting. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 204-210	7.1	70
81	Elastic properties and acoustic dissipation associated with a disorderBrder ferroelectric transition in a metalBrganic framework. <i>CrystEngComm</i> , 2015 , 17, 370-374	3.3	21
80	Manganese Tetraboride, MnB4: High-Temperature Crystal Structure, p-n Transition, (55)Mn NMR Spectroscopy, Solid Solutions, and Mechanical Properties. <i>Chemistry - A European Journal</i> , 2015 , 21, 817	7 ⁴ 8 ⁸ 1	19
79	Topotactic reduction of oxide nanomaterials: unique structure and electronic properties of reduced TiO2 nanoparticles. <i>Materials Horizons</i> , 2014 , 1, 106-110	14.4	22
78	Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance of Framework Flexibility and Guest-Induced Instability. <i>Chemistry of Materials</i> , 2014 , 26, 1767-1769	9.6	109
77	Pressure-Induced Bond Rearrangement and Reversible Phase Transformation in a Metal Drganic Framework. <i>Angewandte Chemie</i> , 2014 , 126, 5689-5692	3.6	24
76	Amorphous metal-organic frameworks. <i>Accounts of Chemical Research</i> , 2014 , 47, 1555-62	24.3	357
75	Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7801-4	16.4	146
74	Cobalt adipate, Co(C6H8O4): antiferromagnetic structure, unusual thermal expansion and magnetoelastic coupling. <i>Materials Horizons</i> , 2014 , 1, 332-337	14.4	20
73	Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. <i>Nature Communications</i> , 2014 , 5, 4813	17.4	199
72	Synthesis, structure and optical properties of europium doped calcium barium phosphate has novel phosphor for solid-state lighting. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6084	7.1	42
71	Solid-state principles applied to organicIhorganic perovskites: new tricks for an old dog. <i>Chemical Science</i> , 2014 , 5, 4712-4715	9.4	610
70	Guest-dependent mechanical anisotropy in pillared-layered soft porous crystals hanoindentation study. <i>Chemical Science</i> , 2014 , 5, 2392	9.4	52
69	Ce3+-Activated ECa2SiO4 and Other Olivine-Type ABXO4 Phosphors for Solid-State Lighting. <i>Chemistry of Materials</i> , 2014 , 26, 3966-3975	9.6	92
68	Research Update: Mechanical properties of metal-organic frameworks Influence of structure and chemical bonding. <i>APL Materials</i> , 2014 , 2, 123902	5.7	53
67	Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. <i>APL Materials</i> , 2014 , 2, 124109	5.7	66
66	Preface to Special Topic: Metal-organic framework materials. <i>APL Materials</i> , 2014 , 2, 123801	5.7	1

(2011-2013)

65	Hierarchical bicontinuous porosity in metalBrganic frameworks templated from functional block co-oligomer micelles. <i>Chemical Science</i> , 2013 , 4, 3573	9.4	113
64	Chiral, Racemic, and Meso-Lithium Tartrate Framework Polymorphs: A Detailed Structural Analysis. <i>Crystal Growth and Design</i> , 2013 , 13, 3705-3715	3.5	23
63	Coordination polymers of alkali metal trithiocyanurates: structure determinations and ionic conductivity measurements using single crystals. <i>CrystEngComm</i> , 2013 , 15, 9400	3.3	23
62	Stacking Faults and Mechanical Behavior beyond the Elastic Limit of an Imidazole-Based Metal Organic Framework: ZIF-8. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3377-81	6.4	19
61	Dimethylammonium copper formate [(CH3)2NH2]Cu(HCOO)3: A metal-organic framework with quasi-one-dimensional antiferromagnetism and magnetostriction. <i>Physical Review B</i> , 2013 , 87,	3.3	54
60	Structural diversity and luminescent properties of lanthanide 2,2- and 2,3-dimethylsuccinate frameworks. <i>CrystEngComm</i> , 2013 , 15, 100-110	3.3	23
59	Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. <i>Chemical Communications</i> , 2013 , 49, 2192-4	5.8	321
58	Thermochemistry of zeolitic imidazolate frameworks of varying porosity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 598-601	16.4	97
57	Mechanical properties of a metal-organic framework containing hydrogen-bonded bifluoride linkers. <i>Chemical Communications</i> , 2013 , 49, 4471-3	5.8	34
56	Coupling of the local defect and magnetic structure of watite Fe1MO. <i>Physical Review B</i> , 2013 , 88,	3.3	8
55	Ligand-Directed Control over Crystal Structures of Inorganic Drganic Frameworks and Formation of Solid Solutions. <i>Angewandte Chemie</i> , 2013 , 125, 5654-5657	3.6	11
54	Structures and magnetic properties of Mn and Co inorganicBrganic frameworks with mixed linear dicarboxylate ligands. <i>CrystEngComm</i> , 2012 , 14, 2711	3.3	20
53	Bismuth 2,6-pyridinedicarboxylates: assembly of molecular units into coordination polymers, CO2 sorption and photoluminescence. <i>Dalton Transactions</i> , 2012 , 41, 4126-34	4.3	54
52	Influence of ligand field stabilization energy on the elastic properties of multiferroic MOFs with the perovskite architecture. <i>Dalton Transactions</i> , 2012 , 41, 3949-52	4.3	69
51	Negative linear compressibility of a metal-organic framework. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11940-3	16.4	216
50	Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks. <i>CrystEngComm</i> , 2012 , 14, 374-378	3.3	43
49	Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+:Ho3+ Co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor. <i>Journal of Applied Physics</i> , 2012 , 111, 094502	2.5	39
48	Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14546-9	16.4	155

47	Oxide phosphors for light upconversion; Yb3+ and Tm3+ co-doped Y2BaZnO5. <i>Journal of Applied Physics</i> , 2011 , 109, 063104	2.5	52
46	Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd). <i>Journal of Materials Chemistry</i> , 2011 , 21, 1387-1394		90
45	Evolution of the structures and magnetic properties of the manganese dicarboxylates, Mn2(CO2(CH2)nCO2)(OH)2 and Mn4(CO2(CH2)nCO2)3(OH)2. <i>Chemical Science</i> , 2011 , 2, 1929	9.4	19
44	Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). <i>Chemical Communications</i> , 2011 , 47, 7983-5	5.8	152
43	Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. <i>Chemical Society Reviews</i> , 2011 , 40, 1059-80	58.5	533
42	Thermal Amorphization of Zeolitic Imidazolate Frameworks. <i>Angewandte Chemie</i> , 2011 , 123, 3123-3127	3.6	28
41	Electric Control of Magnetization and Interplay between Orbital Ordering and Ferroelectricity in a Multiferroic Metal Drganic Framework. <i>Angewandte Chemie</i> , 2011 , 123, 5969-5972	3.6	50
40	Preparation, magnetism and electronic structures of cadmium technetates. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1496-1502		8
39	Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganicBrganic frameworks. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6595		14
38	Structural Diversity and Energetics in Anhydrous Lithium Tartrates: Experimental and Computational Studies of Novel Chiral Polymorphs and Their Racemic and Meso Analogues. <i>Crystal Growth and Design</i> , 2011 , 11, 221-230	3.5	39
37	Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 9938-43	11.5	362
36	Oxide phosphors for efficient light upconversion: Yb3+ and Er3+ co-doped Ln2BaZnO5 (Ln = Y, Gd). Journal of Materials Chemistry, 2010 , 20, 3989		98
35	Structure and properties of an amorphous metal-organic framework. <i>Physical Review Letters</i> , 2010 , 104, 115503	7.4	198
34	Dimensionality Trends in Metal@rganic Frameworks Containing Perfluorinated or Nonfluorinated Benzenedicarboxylates. <i>Crystal Growth and Design</i> , 2010 , 10, 2041-2043	3.5	85
33	Tunable, Ligand-Based Emission from Inorganic Drganic Frameworks: A New Approach to Phosphors for Solid State Lighting and Other Applications. <i>Chemistry of Materials</i> , 2010 , 22, 2255-2260	9.6	62
32	Neutron diffraction study of the magnetic structures of manganese succinate Mn(C4H4O4): A complex inorganic-organic framework. <i>Physical Review B</i> , 2010 , 82,	3.3	16
31	Anionic Metal®rganic Frameworks of Bismuth Benzenedicarboxylates: Synthesis, Structure and Ligand-Sensitized Photoluminescence. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 3823-3828	2.3	71
30	Synthesis, structure and magnetic phase transitions of the manganese succinate hybrid framework, MN(C4H4O4). <i>Chemistry - A European Journal</i> , 2010 , 16, 7579-85	4.8	35

(2006-2010)

29	Mechanical properties of dense zeolitic imidazolate frameworks (ZIFs): a high-pressure X-ray diffraction, nanoindentation and computational study of the zinc framework Zn(Im)2, and its lithium-boron analogue, LiB(Im)4. <i>Chemistry - A European Journal</i> , 2010 , 16, 10684-90	4.8	105
28	Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. <i>Angewandte Chemie</i> , 2010 , 122, 9834-9837	3.6	73
27	Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9640-3	16.4	312
26	The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7087-9	16.4	363
25	Structural Diversity in Coordination Polymers Composed of Divalent Transition Metals, 2,2?-Bipyridine, and Perfluorinated Dicarboxylates. <i>Crystal Growth and Design</i> , 2009 , 9, 4759-4765	3.5	41
24	Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. <i>CrystEngComm</i> , 2009 , 11, 2272	3.3	181
23	Enhanced H2 adsorption enthalpy in the low-surface area, partially fluorinated coordination polymer Zn5(triazole)6(tetrafluoroterephthalate)2(H2O)2[4H2O. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4307		77
22	The role of static disorder in negative thermal expansion in ReO3. <i>Journal of Applied Physics</i> , 2009 , 105, 114901	2.5	42
21	Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13625-7	16.4	653
20	Phase selection and energetics in chiral alkaline Earth tartrates and their racemic and meso analogues: synthetic, structural, computational, and calorimetric studies. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15375-86	16.4	75
19	Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10450-1	16.4	389
18	Modeling the Hydrogen Storage Materials with Exposed M2+ Coordination Sites. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16171-16173	3.8	17
17	Controlled Reduction of Vanadium Oxide Nanoscrolls: Crystal Structure, Morphology, and Electrical Properties. <i>Chemistry of Materials</i> , 2008 , 20, 6396-6404	9.6	71
16	Comparison of chiral and racemic forms of zinc cyclohexane trans-1,2-dicarboxylate frameworks: a structural, computational, and calorimetric study. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8634-7	16.4	35
15	Chemical and Structural Diversity in Chiral Magnesium Tartrates and their Racemic and Meso Analogues. <i>Crystal Growth and Design</i> , 2007 , 7, 1522-1532	3.5	58
14	Materials science. There@room in the middle. <i>Science</i> , 2007 , 318, 58-9	33.3	317
13	Thermodynamic and kinetic factors in the hydrothermal synthesis of hybrid frameworks: zinc 4-cyclohexene-1,2-dicarboxylates. <i>Chemical Communications</i> , 2006 , 2687-9	5.8	50
12	Structural diversity and chemical trends in hybrid inorganic-organic framework materials. <i>Chemical Communications</i> , 2006 , 4780-95	5.8	945

11	A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic-organic materials. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7608-11	16.4	264
10	Epitaxial growth and properties of metastable BiMnO3 thin films. <i>Applied Physics Letters</i> , 2004 , 84, 91-9	9 3 _{3.4}	89
9	The role of temperature in the synthesis of hybrid inorganic-organic materials: the example of cobalt succinates. <i>Chemical Communications</i> , 2004 , 368-9	5.8	369
8	Structure and Magnetism of VSB-2, -3, and -4 or Ni4(O3P-(CH2)-PO3)2[(H2O)n(n= 3, 2, 0), the First Ferromagnetic Nickel(II) Diphosphonates: Increase of Dimensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration. <i>Chemistry of Materials</i> , 1999 , 11, 2937-2947	9.6	84
7	Theoretical Calculations on Silica Frameworks and Their Correlation with Experiment. <i>Chemistry of Materials</i> , 1994 , 6, 1647-1650	9.6	144
6	Processing and Characterization of Thin Films of the Two-Layer Superconducting Phase in the Bi-Sr-Ca-Cu-O System: Evidence for Solid Solution. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 123-129	3.8	35
5	Yttrium-89 magic angle spinning NMR study of rare-earth pyrochlores: paramagnetic shifts in the solid state. <i>Journal of the American Chemical Society</i> , 1990 , 112, 4670-4675	16.4	93
4	Combined single-crystal x-ray diffraction and magic angle spinning NMR study of .alphaCaZn2(PO4)2. <i>Journal of the American Chemical Society</i> , 1988 , 110, 1140-1143	16.4	29
3	Correlations between 31P n.m.r. chemical shifts and structural parameters in crystalline inorganic phosphates. <i>Journal of the Chemical Society Chemical Communications</i> , 1986 , 195		128
2	Crystal structures of mixed-valency and mixed-metal salts A2MIII0.5SbV0.5X6 (A = Rb, Cs; M = Sb, Bi, In, Tl, Fe, Rh; X = Cl, Br). A powder neutron diffraction study. <i>Inorganic Chemistry</i> , 1985 , 24, 545-552	5.1	32
1	Anion ordering in mixed valence dicesium hexachloroantimonate (Cs2SbCl6) and related salts. <i>Journal of the American Chemical Society</i> , 1983 , 105, 3366-3368	16.4	22