Sheng-Heng Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rechargeable Lithium–Sulfur Batteries. Chemical Reviews, 2014, 114, 11751-11787.	23.0	3,842
2	Lithium–Sulfur Batteries: Progress and Prospects. Advanced Materials, 2015, 27, 1980-2006.	11.1	1,288
3	Bifunctional Separator with a Lightâ€Weight Carbonâ€Coating for Dynamically and Statically Stable Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2014, 24, 5299-5306.	7.8	457
4	Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e1901125.	11.1	422
5	Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials, 2018, 28, 1801188.	7.8	368
6	Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Liâ€& Batteries. Advanced Materials, 2014, 26, 1360-1365.	11.1	351
7	High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. Journal of Physical Chemistry Letters, 2014, 5, 1978-1983.	2.1	340
8	A Polyethylene Glycolâ€Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium–Sulfur Batteries. Advanced Materials, 2014, 26, 7352-7357.	11.1	325
9	A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 4530-4538.	5.2	317
10	Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. Advanced Energy Materials, 2015, 5, 1500738.	10.2	255
11	A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 10462-10470.	7.3	252
12	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	4.6	201
13	Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators. Small, 2016, 12, 174-179.	5.2	175
14	A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chemical Communications, 2014, 50, 4184.	2.2	169
15	Rational Design of Statically and Dynamically Stable Lithium–Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio. Advanced Materials, 2018, 30, 1705951.	11.1	167
16	Designing Lithium-Sulfur Cells with Practically Necessary Parameters. Joule, 2018, 2, 710-724.	11.7	148
17	Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li–S batteries with pure sulfur cathodes. Journal of Materials Chemistry A, 2015, 3, 18829-18834.	5.2	147
18	TiS ₂ –Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium–Sulfur Batteries. ACS Energy Letters, 2018, 3, 568-573.	8.8	138

SHENG-HENG CHUNG

#	Article	IF	CITATIONS
19	Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochimica Acta, 2013, 107, 569-576.	2.6	134
20	A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for Highâ€Performance Lithium–Sulfur Battery Cells. ChemSusChem, 2014, 7, 1655-1661.	3.6	129
21	A core–shell electrode for dynamically and statically stable Li–S battery chemistry. Energy and Environmental Science, 2016, 9, 3188-3200.	15.6	124
22	Longâ€Life Lithium–Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires. Advanced Materials, 2018, 30, e1804149.	11.1	120
23	Rational Design of a Dualâ€Function Hybrid Cathode Substrate for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1801014.	10.2	103
24	A three-dimensional self-assembled SnS ₂ -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7659-7667.	5.2	95
25	Dendriteâ€Free Lithium Anode via a Homogenous Liâ€Ion Distribution Enabled by a Kimwipe Paper. Advanced Sustainable Systems, 2017, 1, 1600034.	2.7	82
26	Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity. Materials Horizons, 2017, 4, 249-258.	6.4	78
27	Nano-cellular carbon current collectors with stable cyclability for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 9590.	5.2	73
28	Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries. Electrochemistry Communications, 2014, 38, 91-95.	2.3	73
29	A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 16805-16811.	5.2	72
30	Three-Dimensional Graphene–Carbon Nanotube–Ni Hierarchical Architecture as a Polysulfide Trap for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 20627-20634.	4.0	72
31	A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development. ACS Applied Materials & Interfaces, 2016, 8, 4709-4717.	4.0	64
32	Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 317-324.	9.5	63
33	Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li–S Cells. Journal of Physical Chemistry Letters, 2015, 6, 2163-2169.	2.1	61
34	A design of the cathode substrate for high-loading polysulfide cathodes in lean-electrolyte lithium-sulfur cells. Chemical Engineering Journal, 2021, 422, 130363.	6.6	61
35	Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell. Chemical Engineering Journal, 2022, 429, 132257.	6.6	61
36	Lithium–Sulfur Batteries with the Lowest Self-Discharge and the Longest Shelf life. ACS Energy Letters, 2017, 2, 1056-1061.	8.8	60

SHENG-HENG CHUNG

#	Article	IF	CITATIONS
37	Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries. Small, 2016, 12, 939-950.	5.2	59
38	Lean-electrolyte lithium–sulfur electrochemical cells with high-loading carbon nanotube/nanofiber–polysulfide cathodes. Chemical Communications, 2021, 57, 2009-2012.	2.2	56
39	Eggshell Membrane-Derived Polysulfide Absorbents for Highly Stable and Reversible Lithium–Sulfur Cells. ACS Sustainable Chemistry and Engineering, 2014, 2, 2248-2252.	3.2	49
40	Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries. Journal of Power Sources, 2016, 334, 179-190.	4.0	46
41	A nickel-foam@carbon-shell with a pie-like architecture as an efficient polysulfide trap for high-energy Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 15002-15007.	5.2	44
42	Carbonized Eggshell Membranes as a Natural and Abundant Counter Electrode for Efficient Dye‧ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401524.	10.2	43
43	A Li ₂ Sâ€TiS ₂ â€Electrolyte Composite for Stable Li ₂ Sâ€Based Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901397.	10.2	41
44	A Shellâ€Shaped Carbon Architecture with Highâ€Loading Capability for Lithium Sulfide Cathodes. Advanced Energy Materials, 2017, 7, 1700537.	10.2	40
45	Materials and electrode designs of high-performance NiCo2S4/Reduced graphene oxide for supercapacitors. Ceramics International, 2021, 47, 25942-25950.	2.3	40
46	Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23122-23130.	4.0	39
47	A Facile, Lowâ€Cost Hotâ€Pressing Process for Fabricating Lithium–Sulfur Cells with Stable Dynamic and Static Electrochemistry. Advanced Materials, 2018, 30, e1805571.	11.1	38
48	Pyrrolicâ€Type Nitrogenâ€Doped Hierarchical Macro/Mesoporous Carbon as a Bifunctional Host for Highâ€Performance Thick Cathodes for Lithiumâ€Sulfur Batteries. Small, 2019, 15, e1900690.	5.2	37
49	Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium sulfur batteries. Materials Today Energy, 2018, 9, 336-344.	2.5	34
50	Composite gel-polymer electrolyte for high-loading polysulfide cathodes. Journal of Materials Chemistry A, 2022, 10, 13719-13726.	5.2	28
51	Quantitative Analysis of Electrochemical and Electrode Stability with Low Self-Discharge Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20318-20323.	4.0	27
52	Designing Lithium–Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition. ACS Applied Materials & Interfaces, 2018, 10, 43749-43759.	4.0	27
53	Transforming waste newspapers into nitrogen-doped conducting interlayers for advanced Li–S batteries. Sustainable Energy and Fuels, 2017, 1, 444-449.	2.5	26
54	A rationally designed polysulfide-trapping interface on the polymeric separator for high-energy Li–S batteries. Materials Today Energy, 2017, 6, 72-78.	2.5	26

SHENG-HENG CHUNG

#	Article	IF	CITATIONS
55	A Poly(ethylene oxide)/Lithium bis(trifluoromethanesulfonyl)imide-Coated Polypropylene Membrane for a High-Loading Lithium–Sulfur Battery. Polymers, 2021, 13, 535.	2.0	25
56	Oligoanilines as a suppressor of polysulfide shuttling in lithium–sulfur batteries. Materials Horizons, 2017, 4, 908-914.	6.4	24
57	Bifunctional Binder with Nucleophilic Lithium Polysulfide Immobilization Ability for High-Loading, High-Thickness Cathodes in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 17393-17399.	4.0	24
58	A Li ₂ S-Based Catholyte/Solid-State-Electrolyte Composite for Electrochemically Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58712-58722.	4.0	23
59	Rational Design of Highâ€Performance Nickelâ€Sulfur Nanocomposites by the Electroless Plating Method for Electrochemical Lithiumâ€Sulfur Battery Cathodes. Batteries and Supercaps, 2022, 5, .	2.4	22
60	A core–shell cathode substrate for developing high-loading, high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 24841-24847.	5.2	20
61	Investigation and Design of High-Loading Sulfur Cathodes with a High-Performance Polysulfide Adsorbent for Electrochemically Stable Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9254-9264.	3.2	20
62	Preparation and Electrical Properties of LaFeO3Compacts Using Chemically Synthesized Powders. Japanese Journal of Applied Physics, 2008, 47, 8498-8501.	0.8	16
63	An ant-nest-like cathode substrate for lithium-sulfur batteries with practical cell fabrication parameters. Energy Storage Materials, 2019, 18, 491-499.	9.5	16
64	Module-Designed Carbon-Coated Separators for High-Loading, High-Sulfur-Utilization Cathodes in Lithium–Sulfur Batteries. Molecules, 2022, 27, 228.	1.7	16
65	Nanoporosity of Carbon–Sulfur Nanocomposites toward the Lithium–Sulfur Battery Electrochemistry. Nanomaterials, 2021, 11, 1518.	1.9	15
66	Effects of B2O3 addition on the microstructure and microwave dielectric properties of La4Ba2Ti5O18. Journal of Alloys and Compounds, 2008, 465, 356-360.	2.8	13
67	Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells. Nanomaterials, 2021, 11, 2083.	1.9	10
68	Structural and Surfacial Modification of Carbon Nanofoam as an Interlayer for Electrochemically Stable Lithium-Sulfur Cells. Nanomaterials, 2021, 11, 3342.	1.9	9
69	Lithium-Sulfur Batteries: Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide (Adv. Energy Mater. 18/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
70	Design and Development of High-Loading Carbon-Sulfur Nanocomposite Cathodes with Drop-Casting Method. ECS Meeting Abstracts, 2021, MA2021-01, 347-347.	0.0	0
71	A Functional PEO/LiTFSI-Coated Coated Separator for Electrochemical Lithium-Sulfur Battery. ECS Meeting Abstracts, 2021, MA2021-01, 348-348.	0.0	0
72	Electrode Design for Lithium-Sulfur Batteries Featuring High Sulfur Loading and Low Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 360-360.	0.0	0

#	Article	IF	CITATIONS
73	A Design of Lean-Electrolyte Lithium-Sulfur Cells. ECS Meeting Abstracts, 2021, MA2021-02, 138-138.	0.0	Ο