Carole C Perry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907445/publications.pdf

Version: 2024-02-01

164 papers 12,230 citations

52 h-index 29333 108 g-index

171 all docs

171 docs citations

times ranked

171

16600 citing authors

#	Article	IF	CITATIONS
1	Performance of GFN1-xTB for periodic optimization of metal organic frameworks. Physical Chemistry Chemical Physics, 2022, 24, 10906-10914.	1.3	4
2	Lessons from a Challenging System: Accurate Adsorption Free Energies at the Amino Acid/ZnO Interface. Journal of Chemical Theory and Computation, 2021, 17, 4420-4434.	2.3	5
3	Fungal pigments on paper: Raman and quantum chemistry studies of Alternaria Sp. Dyes and Pigments, 2021, 195, 109719.	2.0	5
4	Anchoring of a hydrophobic heptapeptide (AFILPTG) on silica facilitates peptide unfolding at the abiotic†biotic interface. Physical Chemistry Chemical Physics, 2021, 23, 18001-18011.	1.3	0
5	Mapping blood biochemistry by Raman spectroscopy at the cellular level. Chemical Science, 2021, 13, 133-140.	3.7	5
6	Materials-Based Approach for Interrogating Human Prostate Cancer Cell Adhesion and Migratory Potential Using a Fluoroalkylsilica Culture Surface. ACS Applied Bio Materials, 2020, 3, 495-504.	2.3	3
7	Polariton condensation and surface enhanced Raman in spherical ZnO microcrystals. Nature Communications, 2020, 11, 4908.	5.8	7
8	Efficacy and stability of a novel silica supplement for improving bone development in broilers. British Poultry Science, 2020, 61, 719-724.	0.8	3
9	Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets. Nature Communications, 2020, 11, 5517.	5.8	5
10	Azamacrocycles and tertiary amines can be used to form size tuneable hollow structures or monodisperse oxide nanoparticles depending on the $\hat{a} \in M\hat{a} \in M$ source. Dalton Transactions, 2019, 48, 15470-15479.	1.6	5
11	Platform for Screening Abiotic/Biotic Interactions Using Indicator Displacement Assays. Langmuir, 2019, 35, 14230-14237.	1.6	3
12	C–H Olefination of Tryptophan Residues in Peptides: Control of Residue Selectivity and Peptide–Amino Acid Cross-linking. Organic Letters, 2019, 21, 7902-7907.	2.4	28
13	The structural and electronic properties of 3,3′-azothiophene photo-switching systems. Physical Chemistry Chemical Physics, 2019, 21, 1344-1353.	1.3	17
14	From phage display to structure: an interplay of enthalpy and entropy in the binding of the LDHSLHS polypeptide to silica. Physical Chemistry Chemical Physics, 2019, 21, 4663-4672.	1.3	9
15	Distributions of Silica and Biopolymer Structural Components in the Spore Elater of Equisetum arvense, an Ancient Silicifying Plant. Frontiers in Plant Science, 2019, 10, 210.	1.7	6
16	Traditional materials from new sources – conflicts in analytical methods for calcium carbonate. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 366-373.	1.1	2
17	Postsynthetic Modification of Phenylalanine Containing Peptides by C–H Functionalization. Organic Letters, 2019, 21, 104-108.	2.4	26
18	Biogenic porous silica and silicon sourced from Mexican Giant Horsetail (Equisetum myriochaetum) and their application as supports for enzyme immobilization. Colloids and Surfaces B: Biointerfaces, 2018, 166, 195-202.	2.5	22

#	Article	IF	Citations
19	A robust spectroscopic method for the determination of protein conformational composition – Application to the annealing of silk. Acta Biomaterialia, 2018, 73, 355-364.	4.1	37
20	Fluorescently-tagged polyamines for the staining of siliceous materials. Plant Physiology and Biochemistry, 2018, 125, 205-211.	2.8	3
21	Bioavailability of a novel form of silicon supplement. Scientific Reports, 2018, 8, 17022.	1.6	15
22	Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chemical Reviews, 2018, 118, 11118-11193.	23.0	167
23	Interactions at the Silica–Peptide Interface: Influence of the Extent of Functionalization on the Conformational Ensemble. Langmuir, 2018, 34, 8255-8263.	1.6	18
24	Do Material Discontinuities in Silica Affect Vibration Modes?. Journal of Physical Chemistry A, 2018, 122, 4997-5003.	1.1	3
25	Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk–Silica Chimeras. Advanced Functional Materials, 2018, 28, 1702570.	7.8	31
26	Osteoinductive recombinant silk fusion proteins for bone regeneration. Acta Biomaterialia, 2017, 49, 127-139.	4.1	42
27	Quantifying the efficiency of Hydroxyapatite Mineralising Peptides. Scientific Reports, 2017, 7, 7681.	1.6	8
28	A Review on Recent Patents and Applications of Inorganic Material Binding Peptides. Recent Patents on Nanotechnology, 2017, 11, 168-180.	0.7	11
29	Modeling of Infrared–Visible Sum Frequency Generation Microscopy Images of a Giant Liposome. Microscopy and Microanalysis, 2016, 22, 1128-1145.	0.2	2
30	Aqueous Peptide–TiO ₂ Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms. ACS Applied Materials & Enthalpically Driven Mechanisms.	4.0	45
31	Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly. Biomacromolecules, 2016, 17, 427-436.	2.6	60
32	Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare's tale. Journal of Biological Inorganic Chemistry, 2016, 21, 101-112.	1.1	15
33	Influence of silk–silica fusion protein design on silica condensation in vitro and cellular calcification. RSC Advances, 2016, 6, 21776-21788.	1.7	22
34	The nature of the silicaphilic fluorescence of PDMPO. Physical Chemistry Chemical Physics, 2016, 18, 5938-5948.	1.3	11
35	The Importance and Clinical Relevance of Surfaces in Tissue Culture. ACS Biomaterials Science and Engineering, 2016, 2, 152-164.	2.6	15
36	Peptide-directed crystal growth modification in the formation of ZnO. Journal of Materials Chemistry B, 2015, 3, 3777-3788.	2.9	18

#	Article	IF	CITATIONS
37	Functional Material Features of <i>Bombyx mori</i> Silk Light versus Heavy Chain Proteins. Biomacromolecules, 2015, 16, 606-614.	2.6	54
38	Thermodynamic Study of Interactions Between ZnO and ZnO Binding Peptides Using Isothermal Titration Calorimetry. Langmuir, 2015, 31, 6814-6822.	1.6	30
39	ZnO Binding Peptides: Smart Versatile Tools for Controlled Modification of ZnO Growth Mechanism and Morphology. Chemistry of Materials, 2015, 27, 1950-1960.	3.2	36
40	Controlling the Dynamics of Cell Transition in Heterogeneous Cultures using Surface Chemistry. Advanced Healthcare Materials, 2015, 4, 593-601.	3.9	7
41	Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides. Acta Biomaterialia, 2015, 15, 173-180.	4.1	29
42	Interactions at the Silica–Peptide Interface: The Influence of Particle Size and Surface Functionality. Langmuir, 2014, 30, 227-233.	1.6	49
43	Preparation of hexagonal GeO2 particles with particle size and crystallinity controlled by peptides, silk and silk-peptide chimeras. Dalton Transactions, 2014, 43, 16902-16910.	1.6	10
44	Triethylphosphite as a network forming agent enhances in vitro biocompatibility and corrosion protection of hybrid organic–inorganic sol–gel coatings for Ti6Al4V alloys. Journal of Materials Chemistry B, 2014, 2, 7955-7963.	2.9	12
45	Development of an hydrophobic fluoro-silica surface for studying homotypic cancer cell aggregation–disaggregation as a single dynamic process in vitro. Biomaterials Science, 2014, 2, 1486-1496.	2.6	6
46	Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chemistry of Materials, 2014, 26, 5725-5734.	3.2	125
47	Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution. Chemistry of Materials, 2014, 26, 2647-2658.	3.2	369
48	Directional Wetting in Anisotropic Inverse Opals. Langmuir, 2014, 30, 7615-7620.	1.6	31
49	New Insights into the Mechanism of ZnO Formation from Aqueous Solutions of Zinc Acetate and Zinc Nitrate. Chemistry of Materials, 2014, 26, 4119-4129.	3.2	91
50	Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity. Gold Bulletin, 2014, 47, 103-107.	1.1	39
51	Enhancing <i>in vitro</i> biocompatibility and corrosion protection of organic–inorganic hybrid sol–gel films with nanocrystalline hydroxyapatite. Journal of Materials Chemistry B, 2014, 2, 3886-3896.	2.9	31
52	Tunable Anisotropy in Inverse Opals and Emerging Optical Properties. Chemistry of Materials, 2014, 26, 1622-1628.	3.2	71
53	Experimental Characterization of Peptide–Surface Interactions. , 2014, , 37-94.		4
54	Construction of silica-enhanced S-layer protein cages. Acta Biomaterialia, 2013, 9, 5689-5697.	4.1	14

#	Article	IF	CITATIONS
55	Titania Binding Peptides as Templates in the Biomimetic Synthesis of Stable Titania Nanosols: Insight into the Role of Buffers in Peptide-Mediated Mineralization. Langmuir, 2013, 29, 9464-9472.	1.6	43
56	Principles of Biofouling Protection in Marine Sponges: A Model for the Design of Novel Biomimetic and Bio-inspired Coatings in the Marine Environment?. Marine Biotechnology, 2013, 15, 375-398.	1.1	47
57	Chemistry of Aqueous Silica Nanoparticle Surfaces and the Mechanism of Selective Peptide Adsorption. Journal of the American Chemical Society, 2012, 134, 6244-6256.	6.6	349
58	Fabrication, characterisation and performance of hydrophilic and super-hydrophilic silica as cell culture surfaces. Journal of Materials Chemistry, 2012, 22, 12141.	6.7	9
59	Silk–Silica Composites from Genetically Engineered Chimeric Proteins: Materials Properties Correlate with Silica Condensation Rate and Colloidal Stability of the Proteins in Aqueous Solution. Langmuir, 2012, 28, 4373-4381.	1.6	41
60	Bioinspired Silicification of Silica-Binding Peptide-Silk Protein Chimeras: Comparison of Chemically and Genetically Produced Proteins. Biomacromolecules, 2012, 13, 683-690.	2.6	39
61	Mussel adhesive protein inspired coatings: a versatile method to fabricate silica films on various surfaces. Journal of Materials Chemistry, 2012, 22, 4790.	6.7	29
62	Peptide Adsorption on Silica Nanoparticles: Evidence of Hydrophobic Interactions. ACS Nano, 2012, 6, 6356-6363.	7.3	183
63	An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS Journal, 2012, 279, 1710-1720.	2.2	233
64	Entrapment of commercially important invertase in silica particles at physiological pH and the effect of pH and temperature on enzyme activity. Materials Science and Engineering C, 2012, 32, 785-789.	3.8	13
65	Combined release of platelet-rich plasma and 3D-mesenchymal stem cell encapsulation in alginate hydrogels modified by the presence of silica. Journal of Materials Chemistry, 2011, 21, 4086.	6.7	15
66	Poly(vinyl amine)â€"Silica Composite Nanoparticles: Models of the Silicic Acid Cytoplasmic Pool and as a Silica Precursor for Composite Materials Formation. Biomacromolecules, 2011, 12, 1772-1780.	2.6	42
67	Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides. Journal of Materials Chemistry, 2011, 21, 80-89.	6.7	63
68	Interactions of Amines with Silicon Species in Undersaturated Solutions Leads to Dissolution and/or Precipitation of Silica. Langmuir, 2011, 27, 15135-15145.	1.6	25
69	Genetically Engineered Chimeric Silk–Silver Binding Proteins. Advanced Functional Materials, 2011, 21, 2889-2895.	7.8	56
70	The Role of Non-Bonded Interactions in Silica Formation in Vitro. ACS Symposium Series, 2010, , 229-240.	0.5	2
71	Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31, 8902-8910.	5.7	133
72	Synthesis of Enzyme and Quantum Dot in Silica by Combining Continuous Flow and Bioinspired Routes. Silicon, 2010, 2, 33-39.	1.8	15

#	Article	IF	Citations
73	Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. Journal of Materials Chemistry, 2010, 20, 6789.	6.7	368
74	A Solution Study of Silica Condensation and Speciation with Relevance to in Vitro Investigations of Biosilicification. Journal of Physical Chemistry B, 2010, 114, 9947-9955.	1.2	66
75	Facile Fabrication of Uniform Silica Films with Tunable Physical Properties Using Silicatein Protein from Sponges. Langmuir, 2010, 26, 4152-4159.	1.6	46
76	Nanoscale Control of Silica Particle Formation via Silkâ^'Silica Fusion Proteins for Bone Regeneration. Chemistry of Materials, 2010, 22, 5780-5785.	3.2	80
77	Silica Condensation by a Silicatein α Homologue Involves Surface-Induced Transition to a Stable Structural Intermediate Forming a Saturated Monolayer. Biomacromolecules, 2010, 11, 3126-3135.	2.6	12
78	Synthesis of biomimetic polyamines. Arkivoc, 2010, 2009, 116-130.	0.3	24
79	Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification. Journal of Materials Research, 2009, 24, 1700-1708.	1.2	32
80	From biominerals to biomaterials: the role of biomolecule–mineral interactions. Biochemical Society Transactions, 2009, 37, 687-691.	1.6	24
81	Fabrication of Tuneable Thickness Silica Films on Solid Surfaces Using Amines and Proteins. Silicon, 2009, 1, 91-101.	1.8	10
82	A multi-technique study of the effect of aqueous aluminium speciation on hydrolytic gelation of aluminium (oxy)hydroxide. Journal of Colloid and Interface Science, 2009, 332, 122-129.	5.0	6
83	Chemical evidence for intrinsic â€~Si' within Equisetum cell walls. Phytochemistry, 2009, 70, 2089-2095.	1.4	50
84	An Overview of Silica in Biology: Its Chemistry and Recent Technological Advances. Progress in Molecular and Subcellular Biology, 2009, 47, 295-313.	0.9	29
85	Potentiometric determination of the  formal' hydrolysis ratio of aluminium species in aqueous solutions. Analytica Chimica Acta, 2008, 607, 61-73.	2.6	29
86	Controlled stabilisation of silicic acid below pH 9 using poly(1-vinylimidazole). Journal of Materials Chemistry, 2008, 18, 553-559.	6.7	31
87	Interactions of aluminium hydrolytic species with biomolecules. New Journal of Chemistry, 2008, 32, 1346.	1.4	22
88	From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5963-5968.	3.3	127
89	A novel approach to Au@SiO2 core-shell spheres. Journal of Non-Crystalline Solids, 2007, 353, 1212-1215.	1.5	32
90	Silica in Plants: Biological, Biochemical and Chemical Studies. Annals of Botany, 2007, 100, 1383-1389.	1.4	558

#	Article	IF	Citations
91	Interactions of biomolecules with inorganic materials: principles, applications and future prospects. Journal of Materials Chemistry, 2007, 17, 2875.	6.7	84
92	Continuous Silica Coatings on Glass Fibers via Bioinspired Approaches. Langmuir, 2007, 23, 6677-6683.	1.6	33
93	Are Hydroxyl-Containing Biomolecules Important in Biosilicification? A Model Study. Journal of Physical Chemistry B, 2007, 111, 4630-4638.	1.2	29
94	Defining biominerals and organominerals: Direct and indirect indicators of life. Sedimentary Geology, 2007, 201, 157-179.	1.0	150
95	Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Materials Chemistry and Physics, 2007, 103, 112-117.	2.0	53
96	Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Materials Research Bulletin, 2007, 42, 281-287.	2.7	95
97	In SituUltrasonic Monitoring of Aluminum Ion Hydrolysis in Aqueous Solutions: Instrumentation, Techniques, and Comparisons to pH-Metry. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 1329-1339.	2.4	6
98	The Interaction of 'Silicon' with Proteins: Part 2. The Rold of Bioinspired Peptide and Recombinant Proteins in Silica Polymerization. ACS Symposium Series, 2007, , 328-347.	0.5	6
99	Modern biomaterials: a reviewâ€"bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 2007, 18, 1263-1277.	1.7	447
100	Plastron properties of a superhydrophobic surface. Applied Physics Letters, 2006, 89, 104106.	1.5	153
101	Interactions of Bovine Serum Albumin with Aluminum Polyoxocations and Aluminum Hydroxide. Langmuir, 2006, 22, 10078-10088.	1.6	37
102	A new stepwise synthesis of a family of propylamines derived from diatom silaffins and their activity in silicification. Chemical Communications, 2006, , 1521.	2.2	43
103	Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on  Si' speciation and condensation. Journal of Materials Chemistry, 2006, 16, 4220-4230.	6.7	55
104	Surface Tailoring for Controlled Protein Adsorption:Â Effect of Topography at the Nanometer Scale and Chemistry. Journal of the American Chemical Society, 2006, 128, 3939-3945.	6.6	718
105	Baking black opal in the desert sun: The importance of silica in desert varnish. Geology, 2006, 34, 537.	2.0	87
106	Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9428-9433.	3.3	194
107	Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. Journal of Chromatography A, 2006, 1128, 90-96.	1.8	32
108	Siliceous spicules in marine demosponges (example Suberites domuncula). Micron, 2006, 37, 107-120.	1.1	115

#	Article	IF	CITATIONS
109	Quantification of Surface-Bound Proteins by Fluorometric Assay: Comparison with Quartz Crystal Microbalance and Amido Black Assay. Journal of Physical Chemistry B, 2006, 110, 20572-20579.	1.2	46
110	Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir, 2005, 21, 937-943.	1.6	279
111	Spermine, spermidine and their analogues generate tailored silicas. Journal of Materials Chemistry, 2005, 15, 4629.	6.7	106
112	Synthesis of SrCoxTixFe(12â^2x)O19 through sol–gel auto-ignition and its characterisation. Journal of Magnetism and Magnetic Materials, 2005, 292, 100-107.	1.0	71
113	A New Class II Poly (Îμ-Caprolactone)-Silica Hybrid: Synthesis and In Vitro Apatite Forming Ability. Journal of Bioactive and Compatible Polymers, 2005, 20, 437-454.	0.8	3
114	Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chemical Communications, 2005, , 3475.	2.2	52
115	A systematic investigation of aluminium ion speciation at high temperature. Part. 1. Solution studies. Dalton Transactions, 2005, , 2098.	1.6	46
116	Polypeptide-Templated Synthesis of Hexagonal Silica Platelets. Journal of the American Chemical Society, 2005, 127, 12577-12582.	6.6	208
117	Interpretation of Protein Adsorption:Â Surface-Induced Conformational Changes. Journal of the American Chemical Society, 2005, 127, 8168-8173.	6.6	1,270
118	Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, , 3135.	2.2	174
119	The static anion exchange method for generation of high purity aluminium polyoxocations and monodisperse aluminium hydroxide nanoparticles. Journal of Materials Chemistry, 2005, 15, 3415.	6.7	25
120	On the role(s) of additives in bioinspired silicification. Chemical Communications, 2005, , 1113.	2.2	211
121	High-Temperature Speciation Studies of Al-Ion Hydrolysis. Advanced Engineering Materials, 2004, 6, 836-839.	1.6	31
122	Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Advanced Materials, 2004, 16, 1929-1932.	11,1	488
123	Comparative study of thein vitro apatite-forming ability of poly(?-caprolactone)-silica sol-gels using three osteoconductivity tests (static, dynamic, and alternate soaking process). Journal of Biomedical Materials Research Part B, 2004, 69A, 718-727.	3.0	17
124	Towards an understanding of (bio)silicification: the role of amino acids and lysine oligomers in silicification. Journal of Materials Chemistry, 2004, 14, 2231.	6.7	152
125	The preparation and characterization of sol–gel zinc silicate glass particles with pyramid shape and millimetre size. Journal of Materials Chemistry, 2004, 14, 1744-1748.	6.7	8
126	The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping. Journal of Micromechanics and Microengineering, 2004, 14, 1384-1389.	1.5	161

#	Article	IF	CITATIONS
127	Topography Driven Spreading. Physical Review Letters, 2004, 93, 036102.	2.9	221
128	Iron oxide–silica nanocomposites via sol–gel processing. Materials Letters, 2004, 58, 1696-1700.	1.3	11
129	Opaline films on patterned substrates by a simple self-assembly method. Materials Letters, 2004, 58, 3419-3423.	1.3	3
130	Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia. Colloid and Polymer Science, 2003, 281, 652-664.	1.0	76
131	A New Mechanism of Thermochromism for Silica Sol-gel Materials. Monatshefte Für Chemie, 2003, 134, 381-385.	0.9	3
132	A statistical study of poly(?-caprolactone) crystallinity in poly(?-caprolactone)-silica sol-gel materials and theirin vitro calcium phosphate-forming ability. Polymer International, 2003, 52, 1807-1819.	1.6	9
133	Silicification: The Processes by Which Organisms Capture and Mineralize Silica. Reviews in Mineralogy and Geochemistry, 2003, 54, 291-327.	2.2	123
134	Intrinsically Superhydrophobic Organosilica Solâ^Gel Foams. Langmuir, 2003, 19, 5626-5631.	1.6	410
135	Studies of Biosilicas; Structural Aspects, ChemicalPrinciples, Model Studies and the Future. Progress in Molecular and Subcellular Biology, 2003, 33, 269-299.	0.9	41
136	Synergy in macrocycle/SiO2sol–gel nano-composites. Journal of Materials Chemistry, 2002, 12, 3278-3284.	6.7	7
137	A Statistical Approach to the Effect of Sol-Gel Process Variables on the Physical Properties of Polymer [PLLA]-Silica Hybrid Materials for Use as Biomaterials. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	6
138	The systematic study of aluminium speciation in medium concentrated aqueous solutions. Journal of Inorganic Biochemistry, 2001, 87, 115-124.	1.5	70
139	Model studies of the precipitation of silica in the presence of aluminium; implications for biology and industry. Journal of Inorganic Biochemistry, 2000, 78, 331-339.	1.5	13
140	Biosilicification: the role of the organic matrix in structure control. Journal of Biological Inorganic Chemistry, 2000, 5, 537-550.	1.1	279
141	Rare earth doped sol–gel materials as potential absorbance standards. Journal of Alloys and Compounds, 2000, 300-301, 224-229.	2.8	8
142	Biogenic Silica: A Model of Amorphous Structure Control. , 1999, , 237-251.		3
143	Qualitative and Quantitative Studies of Neodymium Doped Silica Gel-Glasses. Journal of Sol-Gel Science and Technology, 1998, 13, 593-597.	1.1	5
144	Evaluation of the osteoblast response to a silica gel in vitro. Journal of Materials Science: Materials in Medicine, 1998, 9, 731-735.	1.7	48

#	Article	IF	CITATIONS
145	Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. Journal of Inorganic Biochemistry, 1998, 69, 181-191.	1.5	68
146	Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chemical Communications, 1998, , 2587-2588.	2.2	49
147	Preparation of silicas from silicon complexes: role of cellulose in polymerisation and aggregation control. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2915.	1.7	73
148	THE PREPARATION AND CHARACTERISATION OF Sn-Si-O GELS. Part 1. SYNTHETIC STRATEGIES AND INITIAL CHARACTERISATION. , 1992 , , 175 - 185 .		3
149	THE PREPARATION AND CHARACTERISATION OF Sn-Si-O GELS. Part 2. THE EFFECT OF THERMAL TREATMENT. , 1992, , 187-194.		1
150	Spectroscopic Studies of Silica/Titania Gel Glasses. , 1992, , 461-466.		1
151	Structural studies of gel phases. Part 2.â€"Infrared spectroscopic study of silica monoliths; the interaction of water with surface species. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3857-3862.	1.7	22
152	Structural studies of gel phases. Part 1.â€"Infrared spectroscopic study of silica monoliths; the effect of thermal history on structure. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 761-766.	1.7	58
153	Solid-State Bioinorganic Chemistry: Mechanisms and Models of Biomineralization. Advances in Inorganic Chemistry, 1991, , 137-200.	0.4	26
154	Structural studies of gel phasesâ€"IV. An infrared reflectance and Fourier transform Raman study of silica and silica/titania gel glasses. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 1487-1494.	0.1	65
155	Controlled deposition of strontium sulphate on behenic acid Langmuir-Blodgett multilayers. Journal Physics D: Applied Physics, 1991, 24, 146-153.	1.3	22
156	Aspects of Biological Silicification., 1989,, 419-431.		7
157	A physico-chemical approach to morphogenesis: the roles of inorganic ions and crystals. Experientia, 1988, 44, 638-650.	1.2	22
158	Cell Wall Biosynthesis during Silicification of Grass Hairs. Journal of Plant Physiology, 1987, 126, 437-448.	1.6	82
159	Structural Aspects of Biogenic Silica. Novartis Foundation Symposium, 1986, 121, 40-58.	1.2	17
160	Biological applications of the Oxford scanning proton microprobe. Trends in Biochemical Sciences, 1985, 10, 6-10.	3.7	47
161	The characterisation of the nature of silica in biological systems. Journal of the Chemical Society Chemical Communications, 1983, , 168.	2.0	59
162	Biosilicification– Structure, Regulation of Structure and Model Studies. , 0, , 475-487.		0

#	Article	IF	CITATIONS
163	Natural and Artificial Hybrid Biomaterials. , 0, , 255-299.		2
164	ZnO Nanogold Doping: A Bioinorganic Paradigm for Sensing and Optical Security Applications. ACS Applied Nano Materials, 0, , .	2.4	1