Enrico Verona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly selective surface acoustic wave e-nose implemented by laser direct writing. Sensors and Actuators B: Chemical, 2019, 283, 154-162.	7.8	22
2	Sezawa wave acoustic humidity sensor based on graphene oxide sensitive film with enhanced sensitivity. Sensors and Actuators B: Chemical, 2018, 272, 236-242.	7.8	35
3	Gasoline identifier based on SHO plate acoustic waves. Ultrasonics, 2016, 70, 34-37.	3.9	10
4	A Shear horizontal surface acoustic wave biosensor for a rapid and specific detection of d-serine. Sensors and Actuators B: Chemical, 2016, 226, 1-6.	7.8	24
5	A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosensors and Bioelectronics, 2015, 67, 516-523.	10.1	58
6	Preparation of surface acoustic wave odor sensors by laser-induced forward transfer. Sensors and Actuators B: Chemical, 2014, 192, 369-377.	7.8	37
7	Tailoring odorant-binding protein coatings characteristics for surface acoustic wave biosensor development. Applied Surface Science, 2014, 302, 250-255.	6.1	18
8	Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins. Biosensors and Bioelectronics, 2013, 41, 328-334.	10.1	87
9	Surface acoustic wave biosensor based on odorant binding proteins deposited by laser induced forward transfer. , 2013, , .		4
10	Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: Application to sarin. Sensors and Actuators B: Chemical, 2012, 174, 158-167.	7.8	60
11	Nerve agent simulant detection by solidly mounted resonators (SMRs) polymer coated using laser induced forward transfer (LIFT) technique. Sensors and Actuators B: Chemical, 2012, 173, 32-39.	7.8	30
12	Matrix-assisted pulsed laser evaporation of chemoselective polymers. Applied Physics A: Materials Science and Processing, 2011, 105, 651-659.	2.3	30
13	Laser-induced forward transfer of focussed ion beam pre-machined donors. Applied Surface Science, 2011, 257, 6650-6653.	6.1	18
14	A comparative study of DRL-lift and lift on integrated polyisobutylene polymer matrices. Applied Physics A: Materials Science and Processing, 2010, 101, 429-434.	2.3	17
15	Polymer pixel enhancement by laser-induced forward transfer forÂsensor applications. Applied Physics A: Materials Science and Processing, 2010, 101, 559-565.	2.3	20
16	Guided lamb wave electroacoustic devices on micromachined AlN/Al plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1175-1182.	3.0	38
17	Thin-Film Bulk-Acoustic-Resonator Gas Sensor Functionalized With a Nanocomposite Langmuir–Blodgett Layer of Carbon Nanotubes. IEEE Transactions on Electron Devices, 2008, 55, 1237-1243.	3.0	60
18	p-type ZnO thin films grown by RF plasma beam assisted Pulsed Laser Deposition. Superlattices and Microstructures, 2007, 42, 79-84.	3.1	18

ENRICO VERONA

#	Article	IF	CITATIONS
19	A study of highly c-axis oriented AlN films for diamond-based surface acoustic wave devices: Bulk structure and surface morphology. Sensors and Actuators A: Physical, 2007, 137, 279-286.	4.1	13
20	Growth and characterization of piezoelectric AlN thin films for diamond-based surface acoustic wave devices. Thin Solid Films, 2006, 497, 304-308.	1.8	18
21	Structural and piezoelectric properties of pulsed laser deposited ZnO thin films. Superlattices and Microstructures, 2006, 39, 366-375.	3.1	20
22	Microbalance chemical sensor based on thin-film bulk acoustic wave resonators. Applied Physics Letters, 2005, 87, 173504.	3.3	65
23	Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1806-1811.	3.0	82
24	Temperature properties of plate modes in quartz. Acoustical Physics, 2002, 48, 8-11.	1.0	1
25	Structural and acoustic characterization of highly oriented piezoelectric AIN films. , 2001, , .		3
26	<title>Microwave frequency acoustic resonators implemented on monolithic Si/AIN substrates</title> ., 2001, 4407, 423.		3
27	Advances in SAW-based gas sensors. Smart Materials and Structures, 1997, 6, 689-699.	3.5	66
28	Surface acoustic wave humidity sensors: a comparison between different types of sensitive membrane. Smart Materials and Structures, 1997, 6, 707-715.	3.5	38
29	Reactive ion etching characterization of a-SiC: H in CF4/O2 plasma. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 29, 176-180.	3.5	16
30	Elastic properties of thin-film palladium for surface acoustic wave (SAW) sensors. Sensors and Actuators B: Chemical, 1995, 23, 203-208.	7.8	39
31	Organometallic polymer membrane for gas detection applied to a surface acoustic wave sensor. Sensors and Actuators B: Chemical, 1995, 25, 670-672.	7.8	29
32	Low temperature growth of r.f. reactively planar magnetron-sputtered AlN films. Thin Solid Films, 1995, 259, 154-162.	1.8	58
33	Brillouin scattering determination of the whole set of elastic constants of a single transparent film of hexagonal symmetry. Journal of Physics Condensed Matter, 1995, 7, 9147-9153.	1.8	65
34	A new surface acoustic wave humidity sensor based on a polyethynylfluorenol membrane. Sensors and Actuators B: Chemical, 1994, 18, 82-84.	7.8	17
35	Surface acoustic wave humidity sensor. Sensors and Actuators B: Chemical, 1993, 16, 288-292.	7.8	38
36	Integrated optic sensor for the detection of H2 concentrations. Sensors and Actuators B: Chemical, 1992, 7, 685-688.	7.8	31

ENRICO VERONA

#	Article	IF	CITATIONS
37	Acoustic love-wave sensor for K+ concentration in H2O solutions. Sensors and Actuators B: Chemical, 1992, 7, 602-605.	7.8	14
38	Cu/Pd thin-film thermopile as a temperature and hydrogen sensor. Sensors and Actuators A: Physical, 1990, 22, 631-635.	4.1	4
39	Hydrogen detection with surface acoustic transverse waves. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1989, 11, 503-508.	0.4	6
40	Saw sensors. Sensors and Actuators, 1989, 17, 55-66.	1.7	105
41	Investigation of elastic properties of ZnO films by Brillouin scattering. Journal of Applied Physics, 1989, 65, 1370-1372.	2.5	8
42	Study of sputtered ZnOî—,Pd thin films as solid state H2 and NH3 gas sensors. Thin Solid Films, 1988, 157, 169-174.	1.8	23
43	Microfabricated chemical sensors. Progress in Solid State Chemistry, 1988, 18, 177-199.	7.2	6
44	Nonlinear electroacoustic interaction between a bias electric field and acoustic Lamb modes in LiNbO3plates. Journal of Applied Physics, 1988, 64, 1033-1039.	2.5	5
45	Acoustic investigation of the elastic properties of ZnO films. Applied Physics Letters, 1987, 51, 1889-1891.	3.3	124
46	Electroelastic effect in layer acoustic mode propagation along ZnO films on Si substrates. Applied Physics Letters, 1986, 49, 1581-1583.	3.3	15
47	Interdigital transducer method of acoustic beam steering for bulk wave acoustoâ€optic Bragg cells. Applied Physics Letters, 1985, 47, 463-465.	3.3	5
48	Acoustic Lamb waveâ€electric field nonlinear interaction inYZLiNbO3plates. Applied Physics Letters, 1985, 46, 25-27.	3.3	24
49	Lambâ€wave electroacoustic voltage sensor. Journal of Applied Physics, 1985, 58, 3265-3267.	2.5	11
50	Laser annealing of ZnO thin films. Journal of Applied Physics, 1984, 56, 2943-2947.	2.5	12
51	A surface acoustic wave voltage sensor. Sensors and Actuators, 1983, 4, 45-54.	1.7	37
52	Palladiumâ€surface acoustic wave interaction for hydrogen detection. Applied Physics Letters, 1982, 41, 300-301.	3.3	80
53	Surface acoustic wave hydrogen sensor. Sensors and Actuators, 1982, 3, 31-39.	1.7	117
54	Real time acousto-optical spectrum analyzer through unguided light-surface acoustic waves interaction. Optics Communications, 1980, 35, 37-41.	2.1	5