Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907311/publications.pdf

Version: 2024-02-01

		361413	2	14800
78	2,357	20		47
papers	citations	h-index		g-index
80	80	80		2003
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6, 8241.	12.8	755
2	Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 2015, 3, 1201-1206.	7.3	203
3	Polarization Encoded Color Image Embedded in a Dielectric Metasurface. Advanced Materials, 2018, 30, e1707499.	21.0	198
4	Metasurface Device with Helicityâ€Dependent Functionality. Advanced Optical Materials, 2016, 4, 321-327.	7.3	107
5	Metasurface for characterization of the polarization state of light. Optics Express, 2015, 23, 10272.	3.4	104
6	Multifunctional Light Sword Metasurface Lens. ACS Photonics, 2018, 5, 1794-1799.	6.6	81
7	Frequency-tunable terahertz absorbers based on graphene metasurface. Optics Communications, 2017, 382, 144-150.	2.1	73
8	Multichannel Metasurface for Simultaneous Control of Holograms and Twisted Light Beams. ACS Photonics, 2017, 4, 1906-1912.	6.6	70
9	Reconfigurable step-zoom metalens without optical and mechanical compensations. Optics Express, 2019, 27, 12221.	3.4	51
10	Bandwidth broadening of a graphene-based circular polarization converter by phase compensation. Optics Express, 2017, 25, 23945.	3.4	43
11	Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces. Optics Express, 2019, 27, 27927.	3.4	40
12	Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved "H―Array. IEEE Photonics Journal, 2017, 9, 1-11.	2.0	36
13	Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface. Plasmonics, 2017, 12, 699-705.	3.4	33
14	New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss. Optics Communications, 2008, 281, 2073-2076.	2.1	32
15	New high negative dispersion photonic crystal fiber. Optik, 2010, 121, 867-871.	2.9	32
16	Reconfigurable continuous-zoom metalens in visible band. Chinese Optics Letters, 2019, 17, 111603.	2.9	32
17	Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering. Optics Letters, 2008, 33, 95.	3.3	28
18	Liquid Level Sensor Based on a V-Groove Structure Plastic Optical Fiber. Sensors, 2018, 18, 3111.	3.8	26

#	Article	IF	CITATIONS
19	A symmetric terahertz graphene-based hybrid plasmonic waveguide. Optics Communications, 2016, 376, 41-46.	2.1	21
20	High-Efficiency All-Dielectric Metasurfaces for Broadband Polarization Conversion. Plasmonics, 2018, 13, 21-29.	3.4	20
21	Metasurface lens with angular modulation for extended depth of focus imaging. Optics Letters, 2020, 45, 611.	3.3	20
22	High-efficiency and multi-frequency polarization converters based on graphene metasurface with twisting double L-shaped unit structure array. Optics Communications, 2017, 394, 50-55.	2.1	19
23	An All-Optical Vector Magnetic Field Sensor Based on Magnetic Fluid and Side-Polished Hollow-Core Optical Fiber. IEEE Sensors Journal, 2021, 21, 21410-21416.	4.7	19
24	Tunable circular dichroism based on graphene-metal split ring resonators. Optics Express, 2021, 29, 21020.	3.4	19
25	Design of a new type high birefringence photonic crystal fiber. Optoelectronics Letters, 2008, 4, 19-22.	0.8	18
26	Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal. Optics and Laser Technology, 2007, 39, 214-218.	4.6	16
27	Proposed phase plate for superimposed orbital angular momentum state generation. Optics Express, 2018, 26, 14792.	3.4	16
28	Tunable and switchable bifunctional meta-surface for plasmon-induced transparency and perfect absorption. Optical Materials Express, 2022, 12, 560.	3.0	16
29	Polarization controllable generation of flat superimposed OAM states based on metasurface. Optics Express, 2019, 27, 20133.	3.4	15
30	Optical bistable device based on one-dimensional photonic crystal waveguide. Optics Communications, 2005, 255, 46-50.	2.1	12
31	All-dielectric metasurfaces for circularly polarized beam-splitters with high conversion efficiency and broad bandwidth. Optik, 2018, 165, 41-49.	2.9	12
32	Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface. Applied Physics Letters, 2020, 117, 021105.	3.3	12
33	Multifunctional analysis and verification of lightning-type electromagnetic metasurfaces. Optics Express, 2022, 30, 17008.	3.4	11
34	Broadband tunable perfect absorber with high absorptivity based on double layer graphene. Optical Materials Express, 2021, 11, 3398.	3.0	10
35	A Temperature Sensor Based on Composite Optical Waveguide. Journal of Lightwave Technology, 2022, 40, 2663-2669.	4.6	10
36	High birefringence terahertz photonic crystal fiber. Optical Engineering, 2013, 52, 014004.	1.0	7

#	Article	IF	Citations
37	Wideband circular polarization converter based on graphene metasurface at terahertz frequencies. Optical Engineering, 2019, 58, 1.	1.0	7
38	Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals. OSA Continuum, 2019, 2, 2477.	1.8	7
39	Temperature-Compensated Multi-Point Strain Sensing Based on Cascaded FBG and Optical FMCW Interferometry. Sensors, 2022, 22, 3970.	3.8	7
40	Chromatic dispersion and PMD monitoring and compensation techniques studies in optical communication systems with single channel speed 40Gbit/s and CSRZ format. Optics Express, 2007, 15, 7667.	3.4	6
41	Circular Airy Beam Shaping by Annular Arrayed-Core Fiber. Journal of Lightwave Technology, 2019, 37, 4844-4850.	4.6	6
42	Allâ€Fiber Optical Waveform Converter Based on Deformed Catenary Nanostructure. Advanced Photonics Research, 2021, 2, 2100042.	3.6	6
43	Spin-orbital coupling of quadratic-power-exponent-phase vortex beam propagating in a uniaxial crystal. Optics Express, 2020, 28, 216.	3.4	6
44	Ultra-broadband perfect solar energy absorber based on tungsten ring arrays. Engineering Research Express, 2021, 3, 045020.	1.6	6
45	Design and Analysis of a Photon Counting System Using Covered Single-Photon Avalanche Photodiode. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	6
46	High-temperature-sensitive and spectrum-contrast-enhanced sensor using a bullet-shaped fiber cavity filled with PDMS. Optics Express, 2022, 30, 12316.	3.4	6
47	Plasmonic quarter-wave plate with U-shaped nanopatches. Optik, 2017, 134, 179-186.	2.9	5
48	Vortex Beam Encoded All-Optical Logic Gates Based on Nano-Ring Plasmonic Antennas. Nanomaterials, 2019, 9, 1649.	4.1	5
49	Design and Analysis of an Afterpulsing Auto-Correction System for Single Photon Avalanche Diodes. IEEE Photonics Technology Letters, 2021, 33, 293-296.	2.5	5
50	Dual-color meta-image display with a silver nanopolarizer based metasurface. Optics Express, 2021, 29, 25894.	3.4	5
51	Highly Sensitive Curvature and Temperature Sensor Based on Double Groove Structure and Hollow Core Fiber. IEEE Sensors Journal, 2022, 22, 9454-9461.	4.7	5
52	High Dynamic Range Photo-Detection Module Using On-Chip Dual Avalanche Photodiodes. IEEE Photonics Technology Letters, 2019, 31, 1940-1943.	2.5	4
53	Wide-range frequency tunable absorber based on cross-groove metamaterials and graphene-sheet. Journal Physics D: Applied Physics, 2020, 53, 255102.	2.8	4
54	A novel quadruple-spaced multiwavelength Brillouin-erbium fiber laser. Laser Physics Letters, 2021, 18, 115102.	1.4	4

#	Article	IF	CITATIONS
55	Ultrafast metamaterial all-optical switching based on coherent modulation. Optics Express, 2022, 30, 9284.	3.4	4
56	PMD compensation using birefringence photonic crystal fiber in 40Gbit/s optical communication system. Optoelectronics Letters, 2008, 4, 30-32.	0.8	3
57	Quasidistributed fiber Bragg grating sensor network based on self-heterodyne detection technique. Optical Engineering, 2014, 53, 057107.	1.0	3
58	Tunable microwave generation method based on birefringence photonic crystal fiber. Optik, 2016, 127, 5990-5999.	2.9	3
59	A SPAD-Based Configurable Photon Counting System. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	3
60	Wide-range tunable, dual-band, background refractive index insensitive terahertz absorber based on graphene and Dirac semimetal. Optical Engineering, 2021, 60, .	1.0	3
61	OPTICAL BISTABILITY SWITCHING PROPERTY IN ONE-DIMENSIONAL NONLINEAR PHOTONIC CRYSTAL. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 41-48.	1.8	2
62	Optical limiter with an organic solution sandwiched between a polymer slab and a polymer grating. Applied Optics, 2005, 44, 4976. Optical limiter with an organic solution sandwiched between a polymer slab and a polymer grating.	2.1	2
63	<inline-formula><math <br="" altimg="none" display="inline">overflow="scroll"><mrow><mn>40</mn><mspace <br="" width="0.3em">/><mi>Cbit</mi><mo>alt;/mo><mi mathvariant="normal">s<:/mi><:/mrow><:/math><:/inline-formula> optical</mi </mo></mspace></mrow></math></inline-formula>	1.0	2
64	Communication systems. Optical Engineering, 2007, 46, 115008. Wavelength conversion technique based on self phase modulation in highly nonlinear microstructure fiber. Optoelectronics Letters, 2010, 6, 278-280.	0.8	2
65	Propagation Properties Analysis of a Surface Plasmonic Waveguide with Two Wedges Separated by a Nano-gap. Journal of Optical Communications, 2014, 35, .	4.7	2
66	Research on terahertz photonic crystal fiber characteristics with high birefringence. Optik, 2014, 125, 154-158.	2.9	2
67	Design and Implementation of a Compact Single-Photon Counting Module. Electronics (Switzerland), 2020, 9, 1131.	3.1	2
68	Design of a Real-Time Breakdown Voltage and On-Chip Temperature Monitoring System for Single Photon Avalanche Diodes. Electronics (Switzerland), 2021, 10, 25.	3.1	2
69	DYNAMICAL ADDRESSING OPTICAL INTERCONNECTION BASED ON ONE-DIMENSIONAL NONLINEAR PHOTONIC CRYSTAL. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 461-468.	1.8	1
70	Simultaneous monitoring method for chromatic dispersion and polarization mode dispersion based on polarization modulation. Journal of Optics, 2007, 9, 320-324.	1.5	1
71	An chromatic dispersion monitoring method based on spectral-shift of SOA. Optoelectronics Letters, 2007, 3, 359-362.	0.8	1
72	Coherent Perfect Absorber Based on Antisymmetric Metasurface With Gain Material. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	1

#	Article	IF	Citations
73	Chromatic Dispersion Monitoring Method Based on Semiconductor Optical Amplifier Spectral Shift in 40 Gbit/s Optical Communication Systems. , 0, , .		O
74	Frequencyâ€tunable terahertz electromagneticâ€pulses generation based on an optical Fabry–Perot microresonator with variable birefringence material. Microwave and Optical Technology Letters, 2011, 53, 2879-2882.	1.4	0
75	Wavelength conversion based on high nonlinear microstructured fiber. Optik, 2012, 123, 502-506.	2.9	O
76	A novel repeat accumulate codes for 40-Gb/s OFDM-ROF systems. , 2013, , .		0
77	Linkage-FFD algorithm for dental crown and abutment shape design. Computer-Aided Design and Applications, 2018, 15, 532-541.	0.6	0
78	Difference frequency sideband generation in semiconductors. OSA Continuum, 2019, 2, 244.	1.8	0