
Pablo Wappner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation to hypoxia in <i>Drosophila melanogaster</i> requires autophagy. Autophagy, 2022, 18, 909-920.	4.3	6
2	FKBP8 is a novel molecule that participates in the regulation of the autophagic pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119212.	1.9	7
3	The immunophilin <scp>Zonda</scp> controls regulated exocytosis in endocrine and exocrine tissues. Traffic, 2021, 22, 111-122.	1.3	1
4	Context-specific functions of Notch in Drosophila blood cell progenitors. Developmental Biology, 2020, 462, 101-115.	0.9	17
5	A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Scientific Reports, 2019, 9, 19945.	1.6	11
6	Metabo-Devo: A metabolic perspective of development. Mechanisms of Development, 2018, 154, 12-23.	1.7	28
7	The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nature Chemical Biology, 2018, 14, 688-695.	3.9	31
8	Zonda is a novel early component of the autophagy pathway in <i>Drosophila</i> . Molecular Biology of the Cell, 2017, 28, 3070-3081.	0.9	17
9	Musashi mediates translational repression of the <i>Drosophila</i> hypoxia inducible factor. Nucleic Acids Research, 2016, 44, 7555-7567.	6.5	12
10	The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Reports, 2016, 16, 37-47.	2.9	78
11	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
12	Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cellular and Molecular Life Sciences, 2016, 73, 1881-1893.	2.4	9
13	miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga. PLoS Genetics, 2016, 12, e1006073.	1.5	25
14	Striking Oxygen Sensitivity of the Peptidylglycine α-Amidating Monooxygenase (PAM) in Neuroendocrine Cells. Journal of Biological Chemistry, 2015, 290, 24891-24901.	1.6	25
15	Growing with the wind. Fly, 2014, 8, 153-156.	0.9	4
16	The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner. Molecular Biology of the Cell, 2014, 25, 916-924.	0.9	29
17	Sudestada1, a <i>Drosophila</i> ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4025-4030.	3.3	46
18	OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4031-4036.	3.3	105

PABLO WAPPNER

#	Article	IF	CITATIONS
19	Robustness of the hypoxic response: Another job for miRNAs?. Developmental Dynamics, 2012, 241, 1842-1848.	0.8	8
20	Epigenetics: New Questions on the Response to Hypoxia. International Journal of Molecular Sciences, 2011, 12, 4705-4721.	1.8	68
21	Tracheal remodelling in response to hypoxia. Journal of Insect Physiology, 2010, 56, 447-454.	0.9	65
22	Drosophila Genome-Wide RNAi Screen Identifies Multiple Regulators of HIF–Dependent Transcription in Hypoxia. PLoS Genetics, 2010, 6, e1000994.	1.5	47
23	Oxygen Sensing in Drosophila: Multiple Isoforms of the Prolyl Hydroxylase Fatiga Have Different Capacity to Regulate HIFα/Sima. PLoS ONE, 2010, 5, e12390.	1.1	19
24	Central Role of the Oxygen-dependent Degradation Domain of <i>Drosophila</i> HIFα/Sima in Oxygen-dependent Nuclear Export. Molecular Biology of the Cell, 2009, 20, 3878-3887.	0.9	14
25	Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Developmental Cell, 2008, 14, 547-558.	3.1	110
26	Regulation of the <i>Drosophila</i> Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export. Molecular and Cellular Biology, 2008, 28, 3410-3423.	1.1	18
27	Cellular and Developmental Adaptations to Hypoxia: A Drosophila Perspective. Methods in Enzymology, 2007, 435, 123-144.	0.4	35
28	Cloning of hif-1α and hif-2α and mRNA expression pattern during development in zebrafish. Gene Expression Patterns, 2007, 7, 339-345.	0.3	81
29	Sensing and responding to hypoxia via HIF in model invertebrates. Journal of Insect Physiology, 2006, 52, 349-364.	0.9	140
30	Reversion of lethality and growth defects in Fatiga oxygenâ€sensor mutant flies by loss of Hypoxiaâ€Inducible Factorâ€Î±/Sima. EMBO Reports, 2005, 6, 1070-1075.	2.0	86
31	Multiple roles of the F-box protein Slimb in Drosophila egg chamber development. Development (Cambridge), 2005, 132, 2561-2571.	1.2	26
32	The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-α/Sima. Journal of Cell Science, 2005, 118, 5431-5441.	1.2	89
33	Regulation of Drosophila Hypoxia-inducible Factor (HIF) Activity in SL2 Cells. Journal of Biological Chemistry, 2004, 279, 36048-36058.	1.6	55
34	Control of the Hypoxic Response in Drosophila melanogaster by the Basic Helix-Loop-Helix PAS Protein Similar. Molecular and Cellular Biology, 2002, 22, 6842-6853.	1.1	222
35	Catecholamine-β-alanyl ligase in the medfly Ceratitis capitata. Insect Biochemistry and Molecular Biology, 2002, 32, 617-625.	1.2	11
36	Occurrence of a Putative SCF Ubiquitin Ligase Complex in Drosophila. Biochemical and Biophysical Research Communications, 2001, 286, 357-364.	1.0	27

PABLO WAPPNER

#	Article	IF	CITATIONS
37	Regulation of theDrosophilabHLH-PAS Protein Sima by Hypoxia: Functional Evidence for Homology with Mammalian HIF-11±. Biochemical and Biophysical Research Communications, 1998, 249, 811-816.	1.0	76
38	The PAS domain confers target gene specificity of <i>Drosophila</i> bHLH/PAS proteins. Genes and Development, 1997, 11, 2079-2089.	2.7	133
39	Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes. Development (Cambridge), 1997, 124, 4707-4716.	1.2	87
40	Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes. Development (Cambridge), 1997, 124, 4707-16.	1.2	24
41	Branching morphogenesis in the Drosophila tracheal system. Cold Spring Harbor Symposia on Quantitative Biology, 1997, 62, 241-7.	2.0	4
42	N-β-Alanyldopamine metabolism for puparial tanning in wild-type and mutant niger strains of the mediterranean fruit fly, Ceratitis capitata. Insect Biochemistry and Molecular Biology, 1996, 26, 585-592.	1.2	15
43	Role of catecholamines and β-alanine in puparial color of wild-type and melanic mutants of the mediterranean fruit fly (Ceratitis capitata). Journal of Insect Physiology, 1996, 42, 455-461.	0.9	13
44	Water loss during cuticle sclerotization in the medfly Ceratitis capitata is independent of catecholamines. Journal of Insect Physiology, 1996, 42, 705-709.	0.9	16
45	White pupa: a Ceratitis capitata mutant lacking catecholamines for tanning the puparium. Insect Biochemistry and Molecular Biology, 1995, 25, 365-373.	1.2	17
46	LARVA TO PHARATE ADULT TRANSFORMATION IN THE MEDFLY <i>CERATITIS CAPITATA</i> (WIEDEMANN) (DIPTERA: TEPHRITIDAE). Canadian Entomologist, 1992, 124, 1139-1147.	0.4	26
47	>Morphogenesis and cuticular markers during the larvalâ€pupal transformation of the medfly <i>Ceratitis capitata</i> . Entomologia Experimentalis Et Applicata, 1991, 60, 135-141.	0.7	29