Chin-Wei Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907157/publications.pdf

Version: 2024-02-01

34	939	18	30
papers	citations	h-index	g-index
36	36	36	1086
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 3017-3021.	13.8	166
2	Efficient thermally activated delayed fluorescence of functional phenylpyridinato boron complexes and high performance organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1452-1462.	5.5	65
3	Enhanced Luminescence and Stability of Cesium Lead Halide Perovskite CsPbX ₃ Nanocrystals by Cu ²⁺ -Assisted Anion Exchange Reactions. Journal of Physical Chemistry C, 2019, 123, 2353-2360.	3.1	65
4	Metal Complexes with Azolateâ€Functionalized Multidentate Ligands: Tactical Designs and Optoelectronic Applications. Chemistry - A European Journal, 2016, 22, 17892-17908.	3.3	64
5	First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 27090-27101.	8.0	54
6	Cationic Ir ^{III} Emitters with Nearâ€Infrared Emission Beyond 800â€nm and Their Use in Lightâ€Emitting Electrochemical Cells. Chemistry - A European Journal, 2019, 25, 5489-5497.	3.3	42
7	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 3069-3073.	2.0	32
8	Efficient Pt(<scp>ii</scp>) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. Journal of Materials Chemistry C, 2015, 3, 10837-10847.	5.5	31
9	Efficient donor-acceptor-donor borylated compounds with extremely small î"EST for thermally activated delayed fluorescence OLEDs. Organic Electronics, 2018, 63, 166-174.	2.6	30
10	Efficient and Saturated Red Lightâ€Emitting Electrochemical Cells Based on Cationic Iridium(III) Complexes with EQE up to 9.4 %. Chemistry - A European Journal, 2019, 25, 13748-13758.	3.3	29
11	Combinational Approach To Realize Highly Efficient Light-Emitting Electrochemical Cells. ACS Applied Materials & Description (2018), 14254-14264.	8.0	28
12	Achieving highly saturated single-color and high color-rendering-index white light-emitting electrochemical cells by CsPbX3 perovskite color conversion layers. Journal of Materials Chemistry C, 2018, 6, 12808-12813.	5.5	27
13	Effects of tuning the applied voltage pulse periods on the electroluminescence spectra of host–guest white light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2018, 20, 18226-18232.	2.8	27
14	Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells with High Efficiency of over 20%. ACS Applied Materials & Defects, 2021, 13, 6450-6460.	8.0	26
15	Facile Generation of Thermally Activated Delayed Fluorescence and Fabrication of Highly Efficient Nonâ€Doped OLEDs Based on Triazine Derivatives. Chemistry - A European Journal, 2019, 25, 16699-16711.	3.3	21
16	Triarylboryl-substituted carbazoles as bipolar host materials for efficient green phosphorescent organic light-emitting devices. Dyes and Pigments, 2019, 163, 145-152.	3.7	21
17	Highly efficient blue and white light-emitting electrochemical cells employing substrates containing embedded diffusive layers. Organic Electronics, 2020, 77, 105515.	2.6	20
18	Dicyano-Imidazole-Based Host Materials Possessing a Balanced Bipolar Nature To Realize Efficient OLEDs with Extremely High Luminance. Journal of Physical Chemistry C, 2020, 124, 20410-20423.	3.1	20

#	Article	IF	CITATIONS
19	Dicyanoâ€lmidazole: A Facile Generation of Pure Blue TADF Materials for OLEDs. Chemistry - A European Journal, 2021, 27, 12998-13008.	3.3	19
20	Peripheral Substitution of a Nearâ€IRâ€Absorbing Soluble Phthalocyanine Using "Click―Chemistry. Chemistry - A European Journal, 2011, 17, 8472-8478.	3.3	18
21	Highly Emissive Red Heterobimetallic Ir ^{III} /M ^I (M ^I = Cu ^I) Tj ET	Qq1 1 0.7 6.7	784314 rgB ⁻ 16
22	Purely organic pyridium-based materials with thermally activated delayed fluorescence for orange-red light-emitting electrochemical cells. Dyes and Pigments, 2022, 203, 110346.	3.7	15
23	Imidazolylâ€Phenylcarbazoleâ€Based Host Materials and Their Use for Coâ€host Designs in Phosphorescent OLEDs. Chemistry - A European Journal, 2022, 28, .	3.3	14
24	Near-infrared light-emitting electrochemical cells based on the excimer emission of a cationic iridium complex. Journal of Materials Chemistry C, 2020, 8, 14378-14385.	5.5	12
25	Perovskite Lightâ€Emitting Electrochemical Cells Employing Electron Injection/Transport Layers of Ionic Transition Metal Complexes. Chemistry - A European Journal, 2021, 27, 17785-17793.	3.3	12
26	Approach to Fast Screen the Formation of an Exciplex. Journal of Physical Chemistry C, 2020, 124, 10175-10184.	3.1	11
27	Facile Fabrication of Highly Stable and Wavelength-Tunable Tin Based Perovskite Materials with Enhanced Quantum Yield via the Cation Transformation Reaction. Journal of Physical Chemistry Letters, 2021, 12, 8763-8769.	4.6	10
28	Dual-Functional Enantiomeric Compounds as Hole-Transporting Materials and Interfacial Layers in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26135-26147.	8.0	9
29	Optimizing carrier balance of a red quantum-dot light-emitting electrochemical cell with a carrier injection layer of cationic Ir(III) complex. Organic Electronics, 2021, 88, 106016.	2.6	8
30	Hybrid Whiteâ€Lightâ€Emitting Electrochemical Cells Based on a Blue Cationic Iridium(III) Complex and Red Quantum Dots. Chemistry - A European Journal, 2020, 26, 13668-13676.	3.3	7
31	Flexible light-emitting electrochemical cells on muscovite mica substrates. Organic Electronics, 2021, 96, 106218.	2.6	7
32	Modification of alkyne-functionalized asymmetric phthalocyanines by Cul-catalyzed azide-alkyne cycloaddition. Tetrahedron, 2015, 71, 9154-9160.	1.9	6
33	Realizing performance improvement of borylated TADF materials for OLEDs. Dyes and Pigments, 2022, 197, 109892.	3.7	5
34	Perovskite Lightâ€Emitting Electrochemical Cells Employing Electron Injection/Transport Layers of Ionic Transition Metal Complexes. Chemistry - A European Journal, 2021, 27, 17725-17725.	3.3	2