
Jean-Eudes Petit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907020/publications.pdf Version: 2024-02-01

IEAN-FLIDES DETIT

#	Article	IF	CITATIONS
1	European aerosol phenomenology â^ 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	4.8	41
2	Overview of the French Operational Network for In Situ Observation of PM Chemical Composition and Sources in Urban Environments (CARA Program). Atmosphere, 2021, 12, 207.	1.0	23
3	Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50. Geoscientific Model Development, 2021, 14, 1681-1697.	1.3	5
4	Meteorology-driven variability of air pollution (PM ₁) revealed with explainable machine learning. Atmospheric Chemistry and Physics, 2021, 21, 3919-3948.	1.9	46
5	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	0.8	23
6	Diurnal evolution of total column and surface atmospheric ammonia in the megacity of Paris, France, during an intense springtime pollution episode. Atmospheric Chemistry and Physics, 2021, 21, 12091-12111.	1.9	2
7	Ammonia and PM2.5 Air Pollution in Paris during the 2020 COVID Lockdown. Atmosphere, 2021, 12, 160.	1.0	32
8	Major Element Signatures of Silicate Dust Deposited on the West African Margin: Links With Transport Patterns and Provenance Regions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035030.	1.2	0
9	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics, 2021, 21, 17185-17223.	1.9	31
10	Response of atmospheric composition to COVID-19 lockdown measures during spring in the Paris region (France). Atmospheric Chemistry and Physics, 2021, 21, 17167-17183.	1.9	20
11	Characterization of particulate and gaseous pollutants from a French dairy and sheep farm. Science of the Total Environment, 2020, 712, 135598.	3.9	11
12	Wood burning: A major source of Volatile Organic Compounds during wintertime in the Paris region. Science of the Total Environment, 2020, 711, 135055.	3.9	22
13	Substantial brown carbon emissions from wintertime residential wood burning over France. Science of the Total Environment, 2020, 743, 140752.	3.9	41
14	Atmospheric Biodetection Part I: Study of Airborne Bacterial Concentrations from January 2018 to May 2020 at Saclay, France. International Journal of Environmental Research and Public Health, 2020, 17, 6292.	1.2	4
15	Nitrate radical generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor coupled to an oxidation flow reactor. Atmospheric Measurement Techniques, 2020, 13, 2397-2411.	1.2	9
16	Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment, 2020, 742, 140332.	3.9	78
17	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65
18	Multi-year ACSM measurements at the central European research station Melpitz (Germany) – PartÂ1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter. Atmospheric Measurement Techniques, 2020, 13, 4973-4994.	1.2	20

Jean-Eudes Petit

#	Article	IF	CITATIONS
19	Sources and Geographical Origins of PM10 in Metz (France) Using Oxalate as a Marker of Secondary Organic Aerosols by Positive Matrix Factorization Analysis. Atmosphere, 2019, 10, 370.	1.0	18
20	Speciation of organic fractions does matter for aerosol source apportionment. Part 3: Combining off-line and on-line measurements. Science of the Total Environment, 2019, 690, 944-955.	3.9	39
21	Variability and Geographical Origin of Five Years Airborne Fungal Spore Concentrations Measured at Saclay, France from 2014 to 2018. Remote Sensing, 2019, 11, 1671.	1.8	16
22	Long-term aerosol optical hygroscopicity study at the ACTRIS SIRTA observatory: synergy between ceilometer and in situ measurements. Atmospheric Chemistry and Physics, 2019, 19, 7883-7896.	1.9	3
23	The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations. Aerosol Science and Technology, 2019, 53, 830-842.	1.5	35
24	Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmospheric Chemistry and Physics, 2019, 19, 14755-14776.	1.9	49
25	Large-scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the 2014–2015 Holuhraun flood lava eruption of BárŰarbunga volcano (Iceland). Atmospheric Chemistry and Physics, 2019, 19, 14253-14287.	1.9	15
26	Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region. Atmospheric Chemistry and Physics, 2018, 18, 18079-18100.	1.9	10
27	Temporal Variability and Geographical Origins of Airborne Pollen Grains Concentrations from 2015 to 2018 at Saclay, France. Remote Sensing, 2018, 10, 1932.	1.8	11
28	AÂEuropean aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28ÂACTRIS sites. Atmospheric Chemistry and Physics, 2018, 18, 7877-7911.	1.9	76
29	Investigation of the geographical origins of PM10 based on long, medium and short-range air mass back-trajectories impacting Northern France during the period 2009–2013. Atmospheric Environment, 2018, 193, 143-152.	1.9	14
30	Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: Climatology, variabilities, geographical origins and model evaluation. Atmospheric Environment, 2017, 155, 68-84.	1.9	52
31	A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses. Environmental Modelling and Software, 2017, 88, 183-187.	1.9	168
32	Organic carbon at a remote site of the western Mediterranean Basin: sources and chemistry during the ChArMEx SOP2 field experiment. Atmospheric Chemistry and Physics, 2017, 17, 8837-8865.	1.9	45
33	The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmospheric Measurement Techniques, 2017, 10, 1043-1059.	1.2	60
34	Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model. Atmospheric Chemistry and Physics, 2016, 16, 10419-10440.	1.9	50
35	Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmospheric Chemistry and Physics, 2016, 16, 11961-11989.	1.9	152
36	Role of the boundary layer dynamics effects on an extreme air pollution event in Paris. Atmospheric Environment, 2016, 141, 571-579.	1.9	33

Jean-Eudes Petit

#	Article	IF	CITATIONS
37	Diagnostic Evaluations of the CHIMERE Model: Local Versus Advected Contributions of Fine Particles and Nitrate Formation Regime in the Paris Megacity. Springer Proceedings in Complexity, 2016, , 465-470.	0.2	Ο
38	Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 2015, 15, 2985-3005.	1.9	138
39	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	1.2	104
40	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. Atmospheric Environment, 2015, 123, 240-250.	1.9	63
41	Source apportionment of PM ₁₀ in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmospheric Chemistry and Physics, 2014, 14, 3325-3346.	1.9	206
42	Atmospheric measurements of ratios between CO ₂ and co-emitted species from traffic: a tunnel study in the Paris megacity. Atmospheric Chemistry and Physics, 2014, 14, 12871-12882.	1.9	47
43	Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF ²) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 2014, 14, 13773-13787.	1.9	74
44	Sources and geographical origins of fine aerosols in Paris (France). Atmospheric Chemistry and Physics, 2014, 14, 8813-8839.	1.9	130
45	A one-year comprehensive chemical characterisation of fine aerosol (PM _{2.5}) at urban, suburban and rural background sites in the region of Paris (France). Atmospheric Chemistry and Physics, 2013, 13, 7825-7844.	1.9	136
46	Integrated method for the measurement of trace nitrogenous atmospheric bases. Atmospheric Measurement Techniques, 2011, 4, 2795-2807.	1.2	7