Shibo Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7906821/publications.pdf Version: 2024-02-01

SHIRO FANC

#	Article	IF	CITATIONS
1	The effects of climate variability and land-use change on streamflow and nutrient loadings in the Sesan, Sekong, and Srepok (3S) River Basin of the Lower Mekong Basin. Environmental Science and Pollution Research, 2022, 29, 7117-7126.	2.7	6
2	Developing machine learning models with multisource inputs for improved land surface soil moisture in China. Computers and Electronics in Agriculture, 2022, 192, 106623.	3.7	12
3	Crop yield prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: A case study for winter wheat in Hebei, China during 2009–2013. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102668.	1.4	14
4	Integrating remotely sensed water stress factor with a crop growth model for winter wheat yield estimation in the North China Plain during 2008–2018. Crop Journal, 2022, 10, 1470-1482.	2.3	9
5	Effects of Climate Warming on the Potential Northern Planting Boundaries of Three Main Grain Crops in China. Agriculture (Switzerland), 2022, 12, 746.	1.4	1
6	A new agricultural drought index for monitoring the water stress of winter wheat. Agricultural Water Management, 2021, 244, 106599.	2.4	21
7	Analyzing the Probability of Acquiring Cloud-Free Imagery in China with AVHRR Cloud Mask Data. Atmosphere, 2021, 12, 214.	1.0	3
8	Using Long-Term Earth Observation Data to Reveal the Factors Contributing to the Early 2020 Desert Locust Upsurge and the Resulting Vegetation Loss. Remote Sensing, 2021, 13, 680.	1.8	13
9	Analysis of variation in reference evapotranspiration and its driving factors in mainland China from 1960 to 2016. Environmental Research Letters, 2021, 16, 054016.	2.2	9
10	Risk Analysis of Wheat Yield Losses at the County Level in Mainland China. Frontiers in Environmental Science, 2021, 9, .	1.5	4
11	Risk analysis of maize yield losses in mainland China at the county level. Scientific Reports, 2020, 10, 10684.	1.6	9
12	Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water (Switzerland), 2020, 12, 1925.	1.2	123
13	Could Vegetation Index be Derive from Synthetic Aperture Radar? – The Linear Relationship between Interferometric Coherence and NDVI. Scientific Reports, 2020, 10, 6749.	1.6	26
14	Indication of the Two Linear Correlation Methods Between Vegetation Index and Climatic Factors: An Example in the Three River-Headwater Region of China During 2000–2016. Atmosphere, 2020, 11, 606.	1.0	2
15	Machine Learning-Based Crop Drought Mapping System by UAV Remote Sensing RGB Imagery. Unmanned Systems, 2020, 08, 71-83.	2.7	36
16	Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model. Computers and Electronics in Agriculture, 2020, 170, 105238.	3.7	24
17	Using FengYun-3C VSM Data and Multivariate Models to Estimate Land Surface Soil Moisture. Remote Sensing, 2020, 12, 1038.	1.8	6
18	Mobile Real-Time Grasshopper Detection and Data Aggregation Framework. Scientific Reports, 2020, 10, 1150.	1.6	10

Shibo Fang

#	Article	IF	CITATIONS
19	Contrasting yield responses of winter and spring wheat to temperature rise in China. Environmental Research Letters, 2020, 15, 124038.	2.2	15
20	Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China. Water (Switzerland), 2019, 11, 248.	1.2	14
21	The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability, 2019, 11, 7243.	1.6	58
22	Analysis of the brightness temperature features of the lunar surface using 37â€⁻CHz channel data from the Chang'E-2 microwave radiometer. Advances in Space Research, 2019, 63, 750-765.	1.2	19
23	Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain. Agricultural Water Management, 2019, 214, 78-86.	2.4	58
24	Special Section Guest Editorial: Recent Advances in Earth Observation Technologies for Agrometeorology and Agroclimatology. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	1
25	Drought indices based on MODIS data compared over a maize-growing season in Songliao Plain, China. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	8
26	Measuring the soil water retention capacity with an integrated vegetation and drought index in southwest China. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	2
27	Change in temperature extremes and its correlation with mean temperature in mainland China from 1960 to 2015. International Journal of Climatology, 2017, 37, 3910-3918.	1.5	22
28	Elemental compositions of lichens from Duolun County, Inner Mongolia, China: Origin, road effect and species difference. Scientific Reports, 2017, 7, 5598.	1.6	3
29	Long-term growth of temperate broadleaved forests no longer benefits soil C accumulation. Scientific Reports, 2017, 7, 42328.	1.6	2
30	Disaster risk regionalization of rice based on its reduction probability in Liaoning Province. Acta Ecologica Sinica, 2017, 37, .	0.0	1
31	Changing Trends and Abrupt Features of Extreme Temperature in Mainland China from 1960 to 2010. Atmosphere, 2016, 7, 22.	1.0	21
32	Quantifying global soil carbon losses in response to warming. Nature, 2016, 540, 104-108.	13.7	879
33	Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China. Scientific Reports, 2016, 6, 23456.	1.6	14
34	Lichen elemental composition distinguishes anthropogenic emissions from dust storm inputs and differs among species: Evidence from Xilinhot, Inner Mongolia, China. Scientific Reports, 2016, 6, 34694.	1.6	5
35	Responses of irrigated winter wheat yield in North China to increased temperature and elevated CO2 concentration. Journal of Meteorological Research, 2015, 29, 691-702.	0.9	4
36	Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 261-266.	1.4	29

Shibo Fang

#	Article	IF	CITATIONS
37	Effects of increased day and night temperature with supplemental infrared heating on winter wheat growth in North China. European Journal of Agronomy, 2015, 64, 67-77.	1.9	64
38	Yield Impact of High Temperature Stress at the Grain Filling Stage of Winter Wheat. Acta Ecologica Sinica, 2015, 35, .	0.0	2
39	Vegetation Coverage Changes and Their Response to Meteorological Variables from 2000 to 2009 in Naqu, Tibet, China. Canadian Journal of Remote Sensing, 2014, 40, 67-74.	1.1	24
40	Variation and Spatial distribution of Surface Solar Radiation in China over recent 50years. Acta Ecologica Sinica, 2014, 34, .	0.0	3
41	Relation of leaf image, chlorophyll fluorescence, reflectance and SPAD in rice and barley. , 2013, , .		1
42	Infrared Warming Reduced Winter Wheat Yields and Some Physiological Parameters, Which Were Mitigated by Irrigation and Worsened by Delayed Sowing. PLoS ONE, 2013, 8, e67518.	1.1	27
43	Assessment of Farmland Afforestation in the Upstream Yangtze River, China. Outlook on Agriculture, 2012, 41, 97-101.	1.8	4
44	Fields experiments in North China show no decrease in winter wheat yields with night temperature increased by 2.0–2.5°C. Science China Earth Sciences, 2012, 55, 1021-1027.	2.3	19
45	Chlorophyll Content of Barley (<l>Hordeum vulgare L.</l>) Estimation from Leaf SPAD, Chlorophyll Fluorescence and Reflectance Properties. Advanced Science Letters, 2012, 11, 702-705.	0.2	4
46	Spatial Variations of Heavy Metals in the Soils of Vegetable-Growing Land along Urban-Rural Gradient of Nanjing, China. International Journal of Environmental Research and Public Health, 2011, 8, 1805-1816.	1.2	24