Jaime F Martinez-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7906765/publications.pdf

Version: 2024-02-01

58 papers 4,440 citations

147801 31 h-index 149698 56 g-index

66 all docs 66
docs citations

66 times ranked 4964 citing authors

#	Article	IF	CITATIONS
1	Direct Targeting of Light Signals to a Promoter Element-Bound Transcription Factor. Science, 2000, 288, 859-863.	12.6	629
2	Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae Â. Plant Physiology, 2010, 153, 1398-1412.	4.8	493
3	Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO Journal, 2007, 26, 4756-4767.	7.8	195
4	Distinct Light-Mediated Pathways Regulate the Biosynthesis and Exchange of Isoprenoid Precursors during Arabidopsis Seedling Development. Plant Cell, 2004, 16, 144-156.	6.6	189
5	Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15211-15216.	7.1	183
6	Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers Plant Cell, 1996, 8, 1519-1532.	6.6	175
7	A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant Journal, 1999, 20, 251-257.	5.7	172
8	Integration of Light and Auxin Signaling. Cold Spring Harbor Perspectives in Biology, 2009, 1, a001586-a001586.	5.5	149
9	Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Current Opinion in Plant Biology, 2017, 37, 49-55.	7.1	142
10	Identification of Primary Target Genes of Phytochrome Signaling. Early Transcriptional Control during Shade Avoidance Responses in Arabidopsis. Plant Physiology, 2006, 141, 85-96.	4.8	127
11	Genomeâ€wide bindingâ€site analysis of REVOLUTA reveals a link between leaf patterning and lightâ€mediated growth responses. Plant Journal, 2012, 72, 31-42.	5 . 7	120
12	ATHB4, a regulator of shade avoidance, modulates hormone response in Arabidopsis seedlings. Plant Journal, 2009, 59, 266-277.	5.7	111
13	<i>PROCERA</i> encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant Journal, 2008, 56, 603-612.	5. 7	110
14	The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix–loop–helix proteins as transcriptional cofactors. Plant Journal, 2011, 66, 258-267.	5.7	92
15	Plant Responses to Vegetation Proximity: A Whole Life Avoiding Shade. Frontiers in Plant Science, 2016, 7, 236.	3.6	92
16	The b <scp>HLH</scp> proteins <scp>BEE</scp> and <scp>BIM</scp> positively modulate the shade avoidance syndrome in <scp>A</scp> rabidopsis seedlings. Plant Journal, 2013, 75, 989-1002.	5.7	90
17	Plastid Cues Posttranscriptionally Regulate the Accumulation of Key Enzymes of the Methylerythritol Phosphate Pathway in Arabidopsis. Plant Physiology, 2006, 141, 75-84.	4.8	84
18	The Shade Avoidance Syndrome in Arabidopsis: The Antagonistic Role of Phytochrome A and B Differentiates Vegetation Proximity and Canopy Shade. PLoS ONE, 2014, 9, e109275.	2.5	83

#	Article	IF	Citations
19	ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1382-1387.	2.4	80
20	Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. Journal of Experimental Botany, 2014, 65, 2937-2947.	4.8	79
21	<i>Cardamine hirsuta < /i>: a versatile genetic system for comparative studies. Plant Journal, 2014, 78, 1-15.</i>	5.7	78
22	A DELLA in Disguise: SPATULA Restrains the Growth of the Developing <i>Arabidopsis</i> Seedling Â. Plant Cell, 2011, 23, 1337-1351.	6.6	77
23	The Interaction of Gibberellins and Photoperiod in the Control of Potato Tuberization. Journal of Plant Growth Regulation, 2001, 20, 377-386.	5.1	68
24	Two bZIP proteins fromAntirrhinumflowers preferentially bind a hybrid Câ€box/Gâ€box motif and help to define a new subâ€family of bZIP transcription factors. Plant Journal, 1998, 13, 489-505.	5.7	67
25	A Light-Regulated Genetic Module Was Recruited to Carpel Development in <i>Arabidopsis</i> following a Structural Change to SPATULA. Plant Cell, 2012, 24, 2812-2825.	6.6	66
26	Regulation of carotenoid biosynthesis by shade relies on specific subsets of antagonistic transcription factors and co-factors. Plant Physiology, 2015, 169, pp.00552.2015.	4.8	66
27	Regulatory Components of Shade Avoidance Syndrome. Advances in Botanical Research, 2010, 53, 65-116.	1.1	61
28	Gibberellin A1 Metabolism Contributes to the Control of Photoperiod-Mediated Tuberization in Potato. PLoS ONE, 2011, 6, e24458.	2.5	44
29	Light signaling: back to space. Trends in Plant Science, 2008, 13, 108-114.	8.8	41
30	Chloroplasts Modulate Elongation Responses to Canopy Shade by Retrograde Pathways Involving HY5 and Abscisic Acid. Plant Cell, 2019, 31, 384-398.	6.6	40
31	The HMG-I/Y protein PF1 stimulates binding of the transcriptional activator GT-2 to the PHYA gene promoter. Plant Journal, 1999, 18, 173-183.	5.7	36
32	Adjustment of the PIF7â€HFR1 transcriptional module activity controls plant shade adaptation. EMBO Journal, 2021, 40, e104273.	7.8	32
33	PAR1 and PAR2 integrate shade and hormone transcriptional networks. Plant Signaling and Behavior, 2008, 3, 453-454.	2.4	29
34	Interaction of gibberellins and phytochrome in the control of cowpea epicotyl elongation. Physiologia Plantarum, 1992, 86, 236-244.	5.2	26
35	Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways. Plant Physiology, 2015, 169, 1240-1253.	4.8	26
36	The end-of-day far-red irradiation increases gibberellin A1 content in cowpea (Vigna sinensis) epicotyls by reducing its inactivation. Physiologia Plantarum, 2000, 108, 426-434.	5.2	25

#	Article	IF	CITATIONS
37	DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development (Cambridge), 2016, 143, 1623-31.	2.5	25
38	Apparent Redundancy in myb Gene Function Provides Gearing for the Control of Flavonoid Biosynthesis in Antirrhinum Flowers. Plant Cell, 1996, 8, 1519.	6.6	24
39	Photoreceptor Activity Contributes to Contrasting Responses to Shade in Cardamine and Arabidopsis Seedlings. Plant Cell, 2019, 31, tpc.00275.2019.	6.6	23
40	A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation. Journal of Experimental Botany, 2011, 62, 2973-2987.	4.8	20
41	PHOR1: A U-Box GA Signaling Component With a Role in Proteasome Degradation?. Journal of Plant Growth Regulation, 2003, 22, 152-162.	5.1	19
42	A Dual Mechanism Controls Nuclear Localization in the Atypical Basic-Helix-Loop-Helix Protein PAR1 of Arabidopsis thaliana. Molecular Plant, 2012, 5, 669-677.	8.3	17
43	A nonâ€ <scp>DNA</scp> â€binding activity for the <scp>ATHB</scp> 4 transcription factor in the control of vegetation proximity. New Phytologist, 2017, 216, 798-813.	7.3	14
44	Effect of the growth retardant LAB 198 999, an acylcyclohexanedione compound, on epicotyl elongation and metabolism of gibberellins A1 and A20 in cowpea. Planta, 1992, 188, 245-251.	3.2	13
45	Light signals generated by vegetation shade facilitate acclimation to low light in shade-avoider plants. Plant Physiology, 2021, 186, 2137-2151.	4.8	13
46	An acylcyclohexadione retardant inhibits gibberellin Al metabolism, thereby nullifying phytochrome-modulation of cowpea epicotyl explants. Physiologia Plantarum, 1995, 94, 708-714.	5.2	12
47	Shedding light on the chromatin changes that modulate shade responses. Physiologia Plantarum, 2020, 169, 407-417.	5.2	12
48	Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants. Phytochemistry, 2022, 194, 113027.	2.9	12
49	Shade Avoidance and Neighbor Detection. Methods in Molecular Biology, 2019, 2026, 157-168.	0.9	11
50	The end-of-day far-red irradiation increases gibberellin A1 content in cowpea (Vigna sinensis) epicotyls by reducing its inactivation. Physiologia Plantarum, 2000, 108, 426-434.	5.2	11
51	Chromatin structure of the $5\hat{a} \in \mathbb{R}^2$ flanking region of the yeastLEU2 gene. Molecular Genetics and Genomics, 1989, 217, 464-470.	2.4	9
52	An acylcyclohexadione retardant inhibits gibberellin A1 metabolism, thereby nullifying phytochrome-modulation of cowpea epicotyl explants. Physiologia Plantarum, 1995, 94, 708-714.	5.2	9
53	Development and carotenoid synthesis in dark-grown carrot taproots require <i>PHYTOCHROME RAPIDLY REGULATED1</i>	4.8	5
54	bZIP and bHLH Family Members Integrate Transcriptional Responses to Light. , 2016, , 329-342.		3

#	Article	IF	CITATIONS
55	Approaches to Study Light Effects on Brassinosteroid Sensitivity. Methods in Molecular Biology, 2017, 1564, 39-47.	0.9	3
56	Potato Tuberization: Evidence for a SD-Dependent and a Gibberellin-Dependent Pathway of Induction., 2003,, 57-66.		2
57	Light Signalling in Plant Developmental Regulation. , 2010, , 255-274.		1
58	The International Symposium on Plant Photobiology 2019: a bright and colourful experience. Physiologia Plantarum, 2020, 169, 297-300.	5.2	0