Minglu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790621/publications.pdf

Version: 2024-02-01

24 papers 3,136 citations

20 h-index 752256 20 g-index

24 all docs

24 docs citations

times ranked

24

1807 citing authors

#	Article	IF	CITATIONS
1	Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft application. Nano Energy, 2022, 93, 106894.	8.2	21
2	Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 2021, 36, 101016.	6.2	180
3	Smart Soft Robotic Manipulator for Artificial Intelligence of Things (AIOT) Based Unmanned Shop Applications., 2021,,.		2
4	Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nature Communications, 2021, 12, 2692.	5 . 8	107
5	All in One, Selfâ€Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator. Advanced Science, 2021, 8, 2004727.	5 . 6	26
6	Artificial Intelligence of Things (AloT) Enabled Virtual Shop Applications Using Selfâ€Powered Sensor Enhanced Soft Robotic Manipulator. Advanced Science, 2021, 8, e2100230.	5.6	138
7	Haptic-Feedback Ring Enabled Human-Machine Interface (HMI) Aiming at Immersive Virtual Reality Experience., 2021,,.		3
8	Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to AI/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	3.6	59
9	Exploration of Multi-dimensional Sensing in Human Machine Interactions. , 2021, , .		O
10	Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy, 2020, 67, 104266.	8.2	101
11	Progress in <scp>TENG</scp> technologyâ€"A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
12	Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nature Communications, 2020, 11, 5381.	5.8	363
13	Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flexible Electronics, 2020, 4, .	5.1	213
14	Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews, 2020, 7, .	5 . 5	194
15	Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances, 2020, 6, eaaz8693.	4.7	419
16	Machine Learning Glove Using Selfâ€Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications. Advanced Science, 2020, 7, 2000261.	5.6	290
17	An epidermal sEMG tattoo-like patch as a new human–machine interface for patients with loss of voice. Microsystems and Nanoengineering, 2020, 6, 16.	3.4	84
18	Self-Powered Intuitive Control Interface Towards Diversified Gaming, AI, and Online Shopping Applications. , 2019, , .		1

#	Article	IF	CITATION
19	Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy, 2019, 58, 641-651.	8.2	140
20	Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy, 2019, 58, 612-623.	8.2	83
21	Intuitive-augmented human-machine multidimensional nano-manipulation terminal using triboelectric stretchable strip sensors based on minimalist design. Nano Energy, 2019, 60, 440-448.	8.2	47
22	Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy, 2019, 60, 545-556.	8.2	71
23	Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano, 2019, 13, 1940-1952.	7.3	221
24	Triboelectric Self-Powered Wearable Flexible Patch as 3D Motion Control Interface for Robotic Manipulator. ACS Nano, 2018, 12, 11561-11571.	7.3	179