Minglu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790621/publications.pdf Version: 2024-02-01

Мімсці 7нц

#	Article	IF	CITATIONS
1	Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances, 2020, 6, eaaz8693.	4.7	419
2	Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nature Communications, 2020, 11, 5381.	5.8	363
3	Machine Learning Glove Using Selfâ€Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications. Advanced Science, 2020, 7, 2000261.	5.6	290
4	Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano, 2019, 13, 1940-1952.	7.3	221
5	Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flexible Electronics, 2020, 4, .	5.1	213
6	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
7	Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews, 2020, 7, .	5.5	194
8	Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 2021, 36, 101016.	6.2	180
9	Triboelectric Self-Powered Wearable Flexible Patch as 3D Motion Control Interface for Robotic Manipulator. ACS Nano, 2018, 12, 11561-11571.	7.3	179
10	Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy, 2019, 58, 641-651.	8.2	140
11	Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Selfâ€Powered Sensor Enhanced Soft Robotic Manipulator. Advanced Science, 2021, 8, e2100230.	5.6	138
12	Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nature Communications, 2021, 12, 2692.	5.8	107
13	Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy, 2020, 67, 104266.	8.2	101
14	An epidermal sEMG tattoo-like patch as a new human–machine interface for patients with loss of voice. Microsystems and Nanoengineering, 2020, 6, 16.	3.4	84
15	Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy, 2019, 58, 612-623.	8.2	83
16	Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy, 2019, 60, 545-556.	8.2	71
17	Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to AI/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	3.6	59
18	Intuitive-augmented human-machine multidimensional nano-manipulation terminal using triboelectric stretchable strip sensors based on minimalist design. Nano Energy, 2019, 60, 440-448.	8.2	47

Minglu Zhu

#	Article	IF	CITATIONS
19	All in One, Selfâ€Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator. Advanced Science, 2021, 8, 2004727.	5.6	26
20	Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft application. Nano Energy, 2022, 93, 106894.	8.2	21
21	Haptic-Feedback Ring Enabled Human-Machine Interface (HMI) Aiming at Immersive Virtual Reality Experience. , 2021, , .		3
22	Smart Soft Robotic Manipulator for Artificial Intelligence of Things (AIOT) Based Unmanned Shop Applications. , 2021, , .		2
23	Self-Powered Intuitive Control Interface Towards Diversified Gaming, AI, and Online Shopping Applications. , 2019, , .		1
24	Exploration of Multi-dimensional Sensing in Human Machine Interactions. , 2021, , .		0