Hongwei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7905948/publications.pdf

Version: 2024-02-01

43 papers 2,969 citations

28 h-index 253896 43 g-index

44 all docs 44 docs citations

44 times ranked 4809 citing authors

#	Article	IF	CITATIONS
1	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	7.3	374
2	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	6.6	219
3	Tailoring the Void Size of Iron Oxide@Carbon Yolk–Shell Structure for Optimized Lithium Storage. Advanced Functional Materials, 2014, 24, 4337-4342.	7.8	212
4	Tailored Yolk–Shell Sn@C Nanoboxes for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2017, 27, 1606023.	7.8	173
5	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	5.2	140
6	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2022, 144, 2171-2178.	6.6	140
7	Nanoengineering of Core–Shell Magnetic Mesoporous Microspheres with Tunable Surface Roughness. Journal of the American Chemical Society, 2017, 139, 4954-4961.	6.6	135
8	Synthesis of Magnesium Oxide Hierarchical Microspheres: A Dual-Functional Material for Water Remediation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21278-21286.	4.0	124
9	Highâ€Content, Wellâ€Dispersed γâ€Fe ₂ O ₃ Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. Advanced Functional Materials, 2014, 24, 1354-1363.	7.8	118
10	Polypyrroleâ€Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithium″on Batteries. Small, 2016, 12, 3732-3737.	5.2	102
11	Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic–organic self-assembly and superior supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 24041-24048.	5.2	96
12	Biphasic Synthesis of Largeâ€Pore and Wellâ€Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery. Small, 2015, 11, 2743-2749.	5.2	82
13	Encapsulation of α-Fe ₂ O ₃ nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 3270-3275.	2.8	82
14	In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica–polymer composites for ultra-high level in-cavity adsorption. Journal of Materials Chemistry A, 2016, 4, 9063-9071.	5.2	73
15	A Vesicle Supraâ€Assembly Approach to Synthesize Amineâ€Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery. Small, 2016, 12, 5169-5177.	5.2	72
16	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Interfaces, 2016, 8, 25306-25312.	4.0	69
17	Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. Journal of Materials Chemistry A, 2017, 5, 19416-19421.	5.2	68
18	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	5.3	65

#	Article	IF	CITATIONS
19	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 3521-3526.	7.2	62
20	Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode. Advanced Materials, 2019, 31, e1906156.	11.1	53
21	Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials, 2016, 26, 5408-5418.	7.8	46
22	Glucose-Responsive Nanosystem Mimicking the Physiological Insulin Secretion via an Enzyme–Polymer Layer-by-Layer Coating Strategy. Chemistry of Materials, 2017, 29, 7725-7732.	3.2	46
23	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	5.8	45
24	A systematic study on the synthesis of \hat{l}_{\pm} -Fe ₂ O ₃ multi-shelled hollow spheres. RSC Advances, 2015, 5, 10304-10309.	1.7	41
25	Unraveling the Formation of Amorphous MoS ₂ Nanograins during the Electrochemical Delithiation Process. Advanced Functional Materials, 2019, 29, 1904843.	7.8	38
26	Highly crystallized Fe2O3nanocrystals on graphene: a lithium ion battery anode material with enhanced cycling. RSC Advances, 2014, 4, 495-499.	1.7	37
27	Flower-like C@SnO X @C hollow nanostructures with enhanced electrochemical properties for lithium storage. Nano Research, 2017, 10, 2966-2976.	5.8	37
28	Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Research, 2016, 9, 291-305.	5.8	30
29	Facile Synthesis of Largeâ€Pore Bicontinuous Cubic Mesoporous Silica Nanoparticles for Intracellular Gene Delivery. ChemNanoMat, 2016, 2, 220-225.	1.5	24
30	Kinetically Controlled Assembly of Nitrogenâ€Doped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	1.7	21
31	Approaching the Lithiation Limit of MoS ₂ While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage. Angewandte Chemie, 2019, 131, 3559-3564.	1.6	18
32	Highly Stretchable Polymer Binder Engineered with Polysaccharides for Silicon Microparticles as Highâ€Performance Anodes. ChemSusChem, 2020, 13, 3887-3892.	3.6	18
33	Controllable synthesis of N-doped hollow mesoporous carbon with tunable structures for enhanced toluene adsorption. Separation and Purification Technology, 2022, 283, 120171.	3.9	18
34	Hierarchical Flower-Like NiCu/SiO ₂ Bimetallic Catalysts with Enhanced Catalytic Activity and Stability for Petroleum Resin Hydrogenation. Industrial & Engineering Chemistry Research, 2021, 60, 5432-5442.	1.8	17
35	Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response. Nano Research, 2018, 11, 370-382.	5.8	14
36	Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic Liquid Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 23947-23954.	1.5	12

#	Article	IF	CITATIONS
37	Adjusting surface acidity of hollow mesoporous carbon nanospheres for enhanced adsorptive denitrogenation of fuels. Chemical Engineering Science, 2020, 228, 115963.	1.9	12
38	Electrode Materials: Interfacial Latticeâ€Strainâ€Driven Generation of Oxygen Vacancies in an Aerobicâ€Annealed TiO ₂ (B) Electrode (Adv. Mater. 52/2019). Advanced Materials, 2019, 31, 1970367.	11.1	9
39	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 101-107.	2.4	8
40	Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation. Journal of Materials Science, 2020, 55, 12876-12883.	1.7	8
41	Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin. Chinese Journal of Chemical Engineering, 2022, 45, 41-50.	1.7	8
42	Nanoparticles: Nanoparticles Mimicking Viral Surface Topography for Enhanced Cellular Delivery (Adv. Mater. 43/2013). Advanced Materials, 2013, 25, 6232-6232.	11.1	1
43	Hollow Nanospheres: Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5579-5579.	7.8	0