Peng Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7905485/publications.pdf

Version: 2024-02-01

391 papers

35,164 citations

81 h-index 174 g-index

407 all docs

407 docs citations

407 times ranked 30773 citing authors

#	Article	IF	CITATIONS
1	Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet, The, 2015, 386, 1973-2028.	6.3	1,703
2	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	6.3	1,311
3	Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013, 34, 2607-2654.	1.3	1,263
4	The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, The, 2021, 397, 129-170.	6.3	1,030
5	Urbanisation and health in China. Lancet, The, 2012, 379, 843-852.	6.3	930
6	The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, The, 2019, 394, 1836-1878.	6.3	905
7	The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet, The, 2018, 391, 581-630.	6.3	802
8	Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 2019, 64, 370-373.	4.3	761
9	The impacts of climate change and human activities on biogeochemical cycles on the <scp>Q</scp> inghaiâ€ <scp>T</scp> ibetan <scp>P</scp> lateau. Global Change Biology, 2013, 19, 2940-2955.	4.2	670
10	The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, The, 2021, 398, 1619-1662.	6.3	669
11	Managing nitrogen to restore water quality in China. Nature, 2019, 567, 516-520.	13.7	667
12	Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogrammetric Engineering and Remote Sensing, 2006, 72, 799-811.	0.3	632
13	The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet, The, 2018, 392, 2479-2514.	6.3	595
14	Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 2020, 236, 111510.	4.6	535
15	Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment, 2008, 42, 7266-7273.	1.9	526
16	Global supply-chain effects of COVID-19 control measures. Nature Human Behaviour, 2020, 4, 577-587.	6.2	521
17	Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogrammetric Engineering and Remote Sensing, 2006, 72, 923-932.	0.3	431
18	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	5.8	420

#	Article	lF	CITATIONS
19	Mapping global cropland and field size. Global Change Biology, 2015, 21, 1980-1992.	4.2	404
20	High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 2020, 3, 564-570.	11.5	391
21	MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sensing of Environment, 2013, 134, 294-304.	4.6	362
22	The role of satellite remote sensing in climate change studies. Nature Climate Change, 2013, 3, 875-883.	8.1	350
23	40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin, 2019, 64, 756-763.	4.3	319
24	Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 2017, 202, 166-176.	4.6	303
25	Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 2014, 6, 964-983.	1.8	299
26	Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sensing, 2016, 8, 151.	1.8	292
27	The Lancet Countdown: tracking progress on health and climate change. Lancet, The, 2017, 389, 1151-1164.	6.3	292
28	Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1355-1362.	2.7	288
29	A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment, 2015, 166, 78-90.	4.6	283
30	Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery. Photogrammetric Engineering and Remote Sensing, 2004, 70, 351-357.	0.3	282
31	Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis. Photogrammetric Engineering and Remote Sensing, 2003, 69, 369-379.	0.3	278
32	Accuracy Assessment Measures for Object-based Image Segmentation Goodness. Photogrammetric Engineering and Remote Sensing, 2010, 76, 289-299.	0.3	270
33	A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sensing of Environment, 1992, 40, 137-151.	4.6	266
34	China's urban expansion from 1990 to 2010 determined with satellite remote sensing. Science Bulletin, 2012, 57, 2802-2812.	1.7	265
35	Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 2014, 140, 1-13.	4.6	262
36	Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. International Journal of Remote Sensing, 2012, 33, 3966-3986.	1.3	257

#	Article	IF	CITATIONS
37	Mapping wetland changes in China between 1978 and 2008. Science Bulletin, 2012, 57, 2813-2823.	1.7	248
38	Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018. Science Bulletin, 2020, 65, 182-187.	4.3	247
39	Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters, 2020, 15, 094044.	2.2	240
40	Filtering Airborne Laser Scanning Data with Morphological Methods. Photogrammetric Engineering and Remote Sensing, 2007, 73, 175-185.	0.3	233
41	Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sensing of Environment, 2011, 115, 3220-3236.	4.6	229
42	Modelling spatialâ€temporal change of Poyang Lake using multitemporal Landsat imagery. International Journal of Remote Sensing, 2008, 29, 5767-5784.	1.3	220
43	Detection of individual trees and estimation of tree height using LiDAR data. Journal of Forest Research, 2007, 12, 425-434.	0.7	192
44	Can you see green? Assessing the visibility of urban forests in cities. Landscape and Urban Planning, 2009, 91, 97-104.	3.4	185
45	A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils. Soil Science Society of America Journal, 2007, 71, 918-926.	1.2	179
46	China's wetland change (1990–2000) determined by remote sensing. Science China Earth Sciences, 2010, 53, 1036-1042.	2.3	179
47	Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sensing of Environment, 2006, 104, 211-225.	4.6	178
48	Water-level changes in China's large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 2013, 132, 131-144.	4.6	171
49	Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth System Science Data, 2020, 12, 1217-1243.	3.7	170
50	Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 2012, 33, 6854-6875.	1.3	158
51	Automated mapping of soybean and corn using phenology. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 151-164.	4.9	156
52	The Tsinghua–Lancet Commission on Healthy Cities in China: unlocking the power of cities for a healthy China. Lancet, The, 2018, 391, 2140-2184.	6.3	155
53	Towards a common validation sample set for global land-cover mapping. International Journal of Remote Sensing, 2014, 35, 4795-4814.	1.3	154
54	Improving 30Âm global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach. International Journal of Remote Sensing, 2013, 34, 5851-5867.	1.3	146

#	Article	IF	Citations
55	Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment, 2016, 183, 170-185.	4.6	146
56	Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping. International Journal of Remote Sensing, 2016, 37, 5632-5646.	1.3	142
57	A Global Geospatial Ecosystem Services Estimate of Urban Agriculture. Earth's Future, 2018, 6, 40-60.	2.4	142
58	Environmental Factors Contributing to the Spread of H5N1 Avian Influenza in Mainland China. PLoS ONE, 2008, 3, e2268.	1.1	134
59	Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Remote Sensing of Environment, 2012, 127, 357-369.	4.6	133
60	Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sensing of Environment, 2016, 179, 196-209.	4.6	132
61	Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data. Photogrammetric Engineering and Remote Sensing, 2007, 73, 1355-1365.	0.3	130
62	Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 2014, 35, 4573-4588.	1.3	130
63	Urban growth models: progress and perspective. Science Bulletin, 2016, 61, 1637-1650.	4.3	127
64	A spatialâ€"temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery. Remote Sensing of Environment, 2006, 101, 167-180.	4.6	123
65	FROM-GC: 30 m global cropland extent derived through multisource data integration. International Journal of Digital Earth, 2013, 6, 521-533.	1.6	123
66	A multi-resolution global land cover dataset through multisource data aggregation. Science China Earth Sciences, 2014, 57, 2317-2329.	2.3	116
67	The 2020 China report of the Lancet Countdown on health and climate change. Lancet Public Health, The, 2021, 6, e64-e81.	4.7	106
68	Earth science applications of ICESat/GLAS: a review. International Journal of Remote Sensing, 2011, 32, 8837-8864.	1.3	105
69	The first all-season sample set for mapping global land cover with Landsat-8 data. Science Bulletin, 2017, 62, 508-515.	4.3	104
70	Urban and air pollution: a multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific Reports, 2020, 10, 18618.	1.6	104
71	Improved global cropland data as an essential ingredient for food security. Global Food Security, 2015, 4, 37-45.	4.0	103
72	Spatial analysis of hemorrhagic fever with renal syndrome in China. BMC Infectious Diseases, 2006, 6, 77.	1.3	102

#	Article	IF	CITATIONS
73	Geographical characteristics of China's wetlands derived from remotely sensed data. Science in China Series D: Earth Sciences, 2009, 52, 723-738.	0.9	102
74	Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment, 2015, 158, 193-206.	4.6	102
75	A phenology-based approach to map crop types in the San Joaquin Valley, California. International Journal of Remote Sensing, 2011, 32, 7777-7804.	1.3	99
76	Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250m resolution. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 38-47.	4.9	99
77	A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data. Pedosphere, 2010, 20, 378-388.	2.1	96
78	Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Environment International, 2017, 103, 99-108.	4.8	93
79	Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data. Remote Sensing of Environment, 2008, 112, 939-954.	4. 6	90
80	A new time series vegetation–water index of phenological–hydrological trait across species and functional types for Poyang Lake wetland ecosystem. Remote Sensing of Environment, 2012, 125, 49-63.	4.6	86
81	Identifying a Safe and Just Corridor for People and the Planet. Earth's Future, 2021, 9, e2020EF001866.	2.4	84
82	Using local transition probability models in Markov random fields for forest change detection. Remote Sensing of Environment, 2008, 112, 2222-2231.	4.6	83
83	Developing a method to estimate building height from Sentinel-1 data. Remote Sensing of Environment, 2020, 240, 111705.	4.6	83
84	Different Environmental Drivers of Highly Pathogenic Avian Influenza H5N1 Outbreaks in Poultry and Wild Birds. PLoS ONE, 2013, 8, e53362.	1.1	82
85	Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0. Remote Sensing of Environment, 2021, 258, 112364.	4. 6	80
86	Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery using linear spectral mixture models. Remote Sensing of Environment, 2006, 101, 329-341.	4.6	79
87	Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sensing of Environment, 2020, 237, 111563.	4.6	79
88	An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery. GIScience and Remote Sensing, 2007, 44, 24-47.	2.4	78
89	Automated Methods for Measuring DBH and Tree Heights with a Commercial Scanning Lidar. Photogrammetric Engineering and Remote Sensing, 2011, 77, 219-227.	0.3	78
90	Protection efficacy of national wetland reserves in China. Science Bulletin, 2012, 57, 1116-1134.	1.7	78

#	Article	IF	CITATIONS
91	Monitoring dynamic changes of global land cover types: fluctuations of major lakes in China every 8Âdays during 2000–2010. Science Bulletin, 2014, 59, 171-189.	1.7	78
92	Modeling grassland spring onset across the Western United States using climate variables and MODIS-derived phenology metrics. Remote Sensing of Environment, 2015, 161, 63-77.	4.6	77
93	A new research paradigm for global land cover mapping. Annals of GIS, 2016, 22, 87-102.	1.4	77
94	Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Science Advances, 2020, 6, .	4.7	76
95	Combining Spatial-Temporal and Phylogenetic Analysis Approaches for Improved Understanding on Global H5N1 Transmission. PLoS ONE, 2010, 5, e13575.	1.1	76
96	Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change. International Journal of Health Geographics, 2009, 8, 38.	1.2	75
97	Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA. International Journal of Remote Sensing, 2008, 29, 3987-4011.	1.3	74
98	Target Detection Method for Water Mapping Using Landsat 8 OLI/TIRS Imagery. Water (Switzerland), 2015, 7, 794-817.	1.2	74
99	Forest canopy closure from classification and spectral unmixing of scene components-multisensor evaluation of an open canopy. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32, 1067-1080.	2.7	72
100	Climate and the Timing of Imported Cases as Determinants of the Dengue Outbreak in Guangzhou, 2014: Evidence from a Mathematical Model. PLoS Neglected Tropical Diseases, 2016, 10, e0004417.	1.3	72
101	Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sensing of Environment, 2018, 218, 13-31.	4.6	71
102	The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 27-36.	4.9	71
103	Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sensing, 2021, 13, 3778.	1.8	71
104	High-resolution remote sensing mapping of global land water. Science China Earth Sciences, 2014, 57, 2305-2316.	2.3	69
105	Construction of the 500â€m Resolution Daily Global Surface Water Change Database (2001–2016). Water Resources Research, 2018, 54, 10,270.	1.7	69
106	A cellular automata downscaling based 1 km global land use datasets (2010–2100). Science Bulletin, 2016, 61, 1651-1661.	4.3	68
107	Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sensing of Environment, 2019, 221, 225-234.	4.6	68
108	Modeling radiation and photosynthesis of a heterogeneous savanna woodland landscape with a hierarchy of model complexities. Agricultural and Forest Meteorology, 2008, 148, 1005-1020.	1.9	67

#	Article	IF	Citations
109	The Need for Improved Maps of Global Cropland. Eos, 2013, 94, 31-32.	0.1	66
110	Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sensing of Environment, 2005, 98, 429-441.	4.6	65
111	China must reduce fertilizer use too. Nature, 2011, 473, 284-285.	13.7	65
112	Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Science China Earth Sciences, 2020, 63, 1390-1407.	2.3	64
113	Identifying patterns and hotspots of global land cover transitions using the ESA CCI Land Cover dataset. Remote Sensing Letters, 2018, 9, 972-981.	0.6	63
114	Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planetary Health, The, 2021, 5, e356-e367.	5.1	63
115	How does urban expansion interact with cropland loss? A comparison of 14 Chinese cities from 1980 to 2015. Landscape Ecology, 2021, 36, 243-263.	1.9	62
116	Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study. Lancet Planetary Health, The, 2021, 5, e808-e817.	5.1	62
117	An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sensing, 2022, 14, 1863.	1.8	61
118	Land-use/Land-cover Classification with Multispectral and Hyperspectral EO-1 Data. Photogrammetric Engineering and Remote Sensing, 2007, 73, 955-965.	0.3	60
119	Remote sensing of environmental change over China: A review. Science Bulletin, 2012, 57, 2793-2801.	1.7	60
120	Change of surface cover greenness in China between 2000 and 2010. Science Bulletin, 2012, 57, 2835-2845.	1.7	57
121	ICESat GLAS Data for Urban Environment Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 1158-1172.	2.7	56
122	Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Science of the Total Environment, 2022, 825, 153938.	3.9	56
123	An "exclusion-inclusion―framework for extracting human settlements in rapidly developing regions of China from Landsat images. Remote Sensing of Environment, 2016, 186, 286-296.	4.6	55
124	Spatio-Temporal Distribution of Malaria in Yunnan Province, China. American Journal of Tropical Medicine and Hygiene, 2009, 81, 503-509.	0.6	55
125	A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network. Sensors, 2010, 10, 8963-8980.	2.1	53
126	A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Computers, Environment and Urban Systems, 2017, 65, 140-149.	3.3	53

#	ARTICLE	IF	CITATIONS
127	The Lancet Countdown on PM 2·5 pollution-related health impacts of China's projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: a modelling study. Lancet Planetary Health, The, 2018, 2, e151-e161.	5.1	53
128	Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sensing, 2020, 12, 770.	1.8	53
129	Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index. Sensors, 2008, 8, 3744-3766.	2.1	52
130	Phenology-based Crop Classification Algorithm and its Implications on Agricultural Water Use Assessments in California's Central Valley. Photogrammetric Engineering and Remote Sensing, 2012, 78, 799-813.	0.3	52
131	A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data, 2016, 1, 3.	1.2	52
132	Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the Midwestern United States. Agricultural and Forest Meteorology, 2015, 201, 111-119.	1.9	51
133	Information fusion for rural land-use classification with high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 883-890.	2.7	50
134	Quantification of pollutants emitted from very large wildland fires in Southern California, USA. Atmospheric Environment, 2006, 40, 3686-3695.	1.9	50
135	A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US. Remote Sensing, 2013, 5, 5926-5943.	1.8	50
136	Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. Remote Sensing, 2018, 10, 471.	1.8	50
137	Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth System Science Data, 2020, 12, 847-867.	3.7	50
138	Crown closure estimation of oak savannah in a dry season with Landsat TM imagery: Comparison of various indices through correlation analysis. International Journal of Remote Sensing, 2003, 24, 1811-1822.	1.3	49
139	Comparison of Gray-Level Reduction and Different Texture Spectrum Encoding Methods for Land-Use Classification Using a Panchromatic Ikonos Image. Photogrammetric Engineering and Remote Sensing, 2003, 69, 529-536.	0.3	49
140	Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. International Journal of Remote Sensing, 2018, 39, 6631-6645.	1.3	49
141	Using CASI Hyperspectral Imagery to Detect Mortality and Vegetation Stress Associated with a New Hardwood Forest Disease. Photogrammetric Engineering and Remote Sensing, 2008, 74, 65-75.	0.3	48
142	Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery. Sensors, 2011, 11, 1943-1958.	2.1	48
143	Do Arctic breeding geese track or overtake a green wave during spring migration?. Scientific Reports, 2015, 5, 8749.	1.6	48
144	Object Detection by Spectropolarimeteric Imagery Fusion. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 3337-3345.	2.7	47

#	Article	IF	CITATIONS
145	Significant coastline changes in China during 1991–2015 tracked by Landsat data. Science Bulletin, 2018, 63, 883-886.	4.3	47
146	A Spatial-Temporal Model for Assessing the Effects of Intervillage Connectivity in Schistosomiasis Transmission. Annals of the American Association of Geographers, 2006, 96, 31-46.	3.0	46
147	Preliminary estimation of the organic carbon pool in China's wetlands. Science Bulletin, 2013, 58, 662-670.	1.7	46
148	Improving the Accuracy of the Water Surface Cover Type in the 30 m FROM-GLC Product. Remote Sensing, 2015, 7, 13507-13527.	1.8	46
149	More protection for China's wetlands. Nature, 2011, 471, 305-305.	13.7	45
150	Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions. Environmental Modelling and Software, 2014, 62, 454-464.	1.9	44
151	Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model. International Journal of Geographical Information Science, 2015, 29, 762-785.	2.2	44
152	Community Integrated Earth System Model (CIESM): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002036.	1.3	44
153	Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. International Journal of Remote Sensing, 2019, 40, 6185-6202.	1.3	43
154	Characterizing spatial–temporal tree mortality patterns associated with a new forest disease. Forest Ecology and Management, 2007, 253, 220-231.	1.4	42
155	Foliage Clumping Index Over China's Landmass Retrieved From the MODIS BRDF Parameters Product. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 2122-2137.	2.7	42
156	Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 203-218.	4.9	42
157	Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China. International Journal of Remote Sensing, 2008, 29, 5511-5531.	1.3	41
158	Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data. International Journal of Remote Sensing, 2012, 33, 3373-3401.	1.3	41
159	Oil palm mapping using Landsat and PALSAR: a case study in Malaysia. International Journal of Remote Sensing, 2016, 37, 5431-5442.	1.3	41
160	The 2021 China report of the Lancet Countdown on health and climate change: seizing the window of opportunity. Lancet Public Health, The, 2021, 6, e932-e947.	4.7	41
161	Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 1106-1115.	2.7	40
162	Determination of Burnt Scars Using Logistic Regression and Neural Network Techniques from a Single Post-Fire Landsat 7 ETM + Image. Photogrammetric Engineering and Remote Sensing, 2004, 70, 841-850.	0.3	40

#	Article	IF	CITATIONS
163	Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data. Sensors, 2009, 9, 1541-1558.	2.1	40
164	Object-based Detection and Classification of Vehicles from High-resolution Aerial Photography. Photogrammetric Engineering and Remote Sensing, 2009, 75, 871-880.	0.3	40
165	Remote Sensing–Based Timeâ€Series Analysis of Cheatgrass (<i>Bromus tectorum</i> L.) Phenology. Journal of Environmental Quality, 2010, 39, 955-963.	1.0	40
166	Mapping Mountain Pine Beetle Mortality through Growth Trend Analysis of Time-Series Landsat Data. Remote Sensing, 2014, 6, 5696-5716.	1.8	40
167	Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 116-125.	1.4	40
168	Monitoring surface mining belts using multiple remote sensing datasets: A global perspective. Ore Geology Reviews, 2018, 101, 675-687.	1.1	40
169	A network approach to prioritize conservation efforts for migratory birds. Conservation Biology, 2020, 34, 416-426.	2.4	40
170	Snail Density Prediction for Schistosomiasis Control Using Ikonos and ASTER Images. Photogrammetric Engineering and Remote Sensing, 2004, 70, 1285-1294.	0.3	39
171	Spring migration patterns, habitat use, and stopover site protection status for two declining waterfowl species wintering in China as revealed by satellite tracking. Ecology and Evolution, 2018, 8, 6280-6289.	0.8	39
172	A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine. Earth System Science Data, 2021, 13, 2437-2456.	3.7	39
173	Geographic stacking: Decision fusion to increase global land cover map accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 57-65.	4.9	38
174	Rapid corn and soybean mapping in US Corn Belt and neighboring areas. Scientific Reports, 2016, 6, 36240.	1.6	38
175	A Circa 2010 Thirty Meter Resolution Forest Map for China. Remote Sensing, 2014, 6, 5325-5343.	1.8	37
176	Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack. Remote Sensing, 2016, 8, 898.	1.8	37
177	Land cover change detection with a crossâ€correlogram spectral matching algorithm. International Journal of Remote Sensing, 2009, 30, 3259-3273.	1.3	35
178	Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 189-199.	4.9	35
179	Long-Term Land Cover Dynamics (1986–2016) of Northeast China Derived from a Multi-Temporal Landsat Archive. Remote Sensing, 2019, 11, 599.	1.8	35
180	Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities. Big Earth Data, 2021, 5, 410-441.	2.0	35

#	Article	IF	Citations
181	China's New Forest Policy. Science, 2000, 289, 2049b-2050.	6.0	35
182	Invasive species change detection using artificial neural networks and CASI hyperspectral imagery. Environmental Monitoring and Assessment, 2008, 140, 15-32.	1.3	34
183	Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine. International Journal of Remote Sensing, 2019, 40, 9541-9555.	1.3	34
184	Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution. Remote Sensing, 2014, 6, 7320-7338.	1.8	33
185	Land cover mapping and data availability in critical terrestrial ecoregions: A global perspective with Landsat thematic mapper and enhanced thematic mapper plus data. Biological Conservation, 2015, 190, 34-42.	1.9	33
186	Dynamic response of East Asian Greater White-fronted Geese to changes of environment during migration: Use of multi-temporal species distribution model. Ecological Modelling, 2017, 360, 70-79.	1.2	33
187	Global COVID-19 pandemic demands joint interventions for the suppression of future waves. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26151-26157.	3.3	33
188	Hyperspectral Characteristics of Canopy Components and Structure for Phenological Assessment of an Invasive Weed. Environmental Monitoring and Assessment, 2006, 120, 109-126.	1.3	32
189	Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data. Remote Sensing of Environment, 2009, 113, 213-223.	4.6	32
190	Forest Canopy Height Extraction in Rugged Areas With ICESat/GLAS Data. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4650-4657.	2.7	32
191	Patterns of Bacillary Dysentery in China, 2005–2010. International Journal of Environmental Research and Public Health, 2016, 13, 164.	1.2	32
192	Species-dependent effects of habitat degradation in relation to seasonal distribution of migratory waterfowl in the East Asian–Australasian Flyway. Landscape Ecology, 2019, 34, 243-257.	1.9	32
193	Assessment of personal exposure to particulate air pollution: the first result of City Health Outlook (CHO) project. BMC Public Health, 2019, 19, 711.	1.2	32
194	Embodied carbon emissions in China-US trade. Science China Earth Sciences, 2020, 63, 1577-1586.	2.3	32
195	The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou. PLoS Neglected Tropical Diseases, 2017, 11, e0005701.	1.3	31
196	New land-cover maps of Ghana for 2015 using Landsat 8 and three popular classifiers for biodiversity assessment. International Journal of Remote Sensing, 2017, 38, 4008-4021.	1.3	30
197	Technical Note: Use of Digital Surface Model for Hardwood Rangeland Monitoring. Journal of Range Management, 2000, 53, 622.	0.3	29
198	Automatic High-Resolution Land Cover Production in Madagascar Using Sentinel-2 Time Series, Tile-Based Image Classification and Google Earth Engine. Remote Sensing, 2020, 12, 3663.	1.8	29

#	Article	IF	Citations
199	Beyond green environments: Multi-scale difference in human exposure to greenspace in China. Environment International, 2022, 166, 107348.	4.8	29
200	FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GIScience and Remote Sensing, 2022, 59, 1026-1047.	2.4	29
201	China needs no foreign help to feed itself. Nature, 2011, 474, 7-7.	13.7	28
202	Bi-scale analysis of multitemporal land cover fractions for wetland vegetation mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 72, 1-15.	4.9	28
203	Lake Water Footprint Identification From Time-Series ICESat/GLAS Data. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 333-337.	1.4	28
204	Bird watching in China reveals bird distribution changes. Science Bulletin, 2013, 58, 649-656.	1.7	28
205	The Association between Hantavirus Infection and Selenium Deficiency in Mainland China. Viruses, 2015, 7, 333-351.	1.5	28
206	Improving the quantification of waterfowl migration with remote sensing and bird tracking. Science Bulletin, 2015, 60, 1984-1993.	4.3	28
207	Landscape-Level Associations of Wintering Waterbird Diversity and Abundance from Remotely Sensed Wetland Characteristics of Poyang Lake. Remote Sensing, 2016, 8, 462.	1.8	28
208	Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation. Global Change Biology, 2017, 23, 4706-4716.	4.2	28
209	Monitoring cropland changes along the Nile River in Egypt over past three decades (1984–2015) using remote sensing. International Journal of Remote Sensing, 2017, 38, 4459-4480.	1.3	27
210	Factors Affecting Spatial Variation of Classification Uncertainty in an Image Object-based Vegetation Mapping. Photogrammetric Engineering and Remote Sensing, 2008, 74, 1007-1018.	0.3	26
211	Forest disturbance interactions and successional pathways in the Southern Rocky Mountains. Forest Ecology and Management, 2016, 375, 35-45.	1.4	26
212	Tracking bamboo dynamics in Zhejiang, China, using time-series of Landsat data from 1990 to 2014. International Journal of Remote Sensing, 2016, 37, 1714-1729.	1.3	26
213	Mapping oil palm extent in Malaysia using ALOS-2 PALSAR-2 data. International Journal of Remote Sensing, 2018, 39, 432-452.	1.3	26
214	Estimating building height in China from ALOS AW3D30. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185, 146-157.	4.9	26
215	Analysis on the Waterbirds Community Survey of Poyang Lake in Winter. Annals of GIS, 2007, 13, 51-64.	1.4	25
216	Suitability mapping of global wetland areas and validation with remotely sensed data. Science China Earth Sciences, 2014, 57, 2283-2292.	2.3	25

#	Article	IF	Citations
217	Circa 2014 African land-cover maps compatible with FROM-GLC and GLC2000 classification schemes based on multi-seasonal Landsat data. International Journal of Remote Sensing, 2016, 37, 4648-4664.	1.3	25
218	Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Scientific Reports, 2016, 6, 30262.	1.6	25
219	A multiple dataset approach for 30-m resolution land cover mapping: a case study of continental Africa. International Journal of Remote Sensing, 2018, 39, 3926-3938.	1.3	25
220	Automatic Registration of Airborne Images with Complex Local Distortion. Photogrammetric Engineering and Remote Sensing, 2006, 72, 1049-1059.	0.3	24
221	China: Invest Wisely in Sustainable Water Use. Science, 2011, 331, 1264-1265.	6.0	24
222	An all-season sample database for improving land-cover mapping of Africa with two classification schemes. International Journal of Remote Sensing, 2016, 37, 4623-4647.	1.3	24
223	Ocean Surface Current Inversion Method for a Doppler Scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6505-6516.	2.7	24
224	Annual dynamic dataset of global cropping intensity from 2001 to 2019. Scientific Data, 2021, 8, 283.	2.4	24
225	Global urbanicity is associated with brain and behaviour in young people. Nature Human Behaviour, 2022, 6, 279-293.	6.2	24
226	Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine. Remote Sensing, 2022, 14, 762.	1.8	24
227	A global map of planting years of plantations. Scientific Data, 2022, 9, 141.	2.4	24
228	Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System. Sensors, 2011, 11, 1706-1720.	2.1	23
229	Societal response to challenges of global change and human sustainable development. Science Bulletin, 2013, 58, 3161-3168.	1.7	23
230	Forest cover dynamics from Landsat time-series data over Yan'an city on the Loess Plateau during the Grain for Green Project. International Journal of Remote Sensing, 2016, 37, 4101-4118.	1.3	23
231	Towards global oil palm plantation mapping using remote-sensing data. International Journal of Remote Sensing, 2018, 39, 5891-5906.	1.3	23
232	Remote Sensing of Forests Over Time. , 2003, , 301-333.		22
233	Cover: Monitoring of invasive Tamarix distribution and effects of biological control with airborne hyperspectral remote sensing. International Journal of Remote Sensing, 2005, 26, 2487-2489.	1.3	22
234	A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis. International Journal of Remote Sensing, 2010, 31, 1027-1035.	1.3	22

#	Article	IF	CITATIONS
235	Settlement extraction in the North China Plain using Landsat and Beijing-1 multispectral data with an improved watershed segmentation algorithm. International Journal of Remote Sensing, 2010, 31, 1411-1426.	1.3	22
236	Water-volume variations of Lake Hulun estimated from serial Jason altimeters and Landsat TM/ETM+ images from 2002 to 2017. International Journal of Remote Sensing, 2019, 40, 670-692.	1.3	22
237	Removing shadows from Google Earth images. International Journal of Remote Sensing, 2010, 31, 1379-1389.	1.3	21
238	Projected impacts of climate change on protected birds and nature reserves in China. Science Bulletin, 2015, 60, 1644-1653.	4.3	21
239	A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires. Remote Sensing, 2020, 12, 932.	1.8	21
240	Double Trouble of Air Pollution by Anthropogenic Dust. Environmental Science &	4.6	21
241	Mapping corn dynamics using limited but representative samples with adaptive strategies. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190, 252-266.	4.9	21
242	Synchronous estimation of DTM and fractional vegetation cover in forested area from airborne LIDAR height and intensity data. Science in China Series D: Earth Sciences, 2008, 51, 176-187.	0.9	20
243	Spatially explicit agent-based modelling for schistosomiasis transmission: Human–environment interaction simulation and control strategy assessment. Epidemics, 2010, 2, 49-65.	1.5	20
244	Ten years after Hurricane Katrina: monitoring recovery in New Orleans and the surrounding areas using remote sensing. Science Bulletin, 2016, 61, 1460-1470.	4.3	20
245	Assessing the ecological vulnerability of protected areas by using Big Earth Data. International Journal of Digital Earth, 2021, 14, 1624-1637.	1.6	20
246	An improved Landsat Image Mosaic of Antarctica. Science China Earth Sciences, 2013, 56, 1-12.	2.3	19
247	Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 51-63.	1.4	19
248	Clustering based on eigenspace transformation – CBEST for efficient classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83, 64-80.	4.9	18
249	A 30 meter land cover mapping of China with an efficient clustering algorithm CBEST. Science China Earth Sciences, 2014, 57, 2293-2304.	2.3	18
250	Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th <scp>IPCC</scp> Assessment. Earth's Future, 2014, 2, 606-611.	2.4	18
251	Seasonal Land Cover Dynamics in Beijing Derived from Landsat 8 Data Using a Spatio-Temporal Contextual Approach. Remote Sensing, 2015, 7, 865-881.	1.8	18
252	Joint Use of ICESat/GLAS and Landsat Data in Land Cover Classification: A Case Study in Henan Province, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 511-522.	2.3	18

#	Article	IF	CITATIONS
253	Using a global reference sample set and a cropland map for area estimation in China. Science China Earth Sciences, 2017, 60, 277-285.	2.3	18
254	Factors contributing to spatial–temporal variations of observed oxygen concentration over the Qinghai-Tibetan Plateau. Scientific Reports, 2021, 11, 17338.	1.6	18
255	A 1 km global cropland dataset from 10 000 BCE to 2100 CE. Earth System Science Data, 2021	, 4.3 , 5403	- 5 \$1.
256	Healthy cities initiative in China: Progress, challenges, and the way forward. The Lancet Regional Health - Western Pacific, 2022, 27, 100539.	1.3	18
257	Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains. Applied Geography, 2014, 55, 165-175.	1.7	17
258	Long-term monitoring of citrus orchard dynamics using time-series Landsat data: a case study in southern China. International Journal of Remote Sensing, 2018, 39, 8271-8292.	1.3	17
259	Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China. Annals of Forest Science, 2018, 75, 1.	0.8	17
260	Mapping oil palm plantation expansion in Malaysia over the past decade (2007–2016) using ALOS-1/2 PALSAR-1/2 data. International Journal of Remote Sensing, 2019, 40, 7389-7408.	1.3	17
261	Evaluating the effect of plain afforestation project and future spatial suitability in Beijing. Science China Earth Sciences, 2020, 63, 1587-1598.	2.3	17
262	Mapping Essential Urban Land Use Categories in Beijing with a Fast Area of Interest (AOI)-Based Method. Remote Sensing, 2021, 13, 477.	1.8	17
263	The land footprint of the global food trade: Perspectives from a case study of soybeans. Land Use Policy, 2021, 111, 105764.	2.5	17
264	Forest cover change in China from 2000 to 2016. International Journal of Remote Sensing, 2022, 43, 593-606.	1.3	17
265	Dimension Reduction of Hyperspectral Images for Classification Applications. Annals of GIS, 2002, 8, 1-8.	1.4	16
266	Remote sensing and geographic information systems in the spatial temporal dynamics modeling of infectious diseases. Science in China Series C: Life Sciences, 2006, 49, 573-582.	1.3	16
267	Detection of the urban heat island in Beijing using HJ-1B satellite imagery. Science China Earth Sciences, 2010, 53, 67-73.	2.3	16
268	A database of global wetland validation samples for wetland mapping. Science Bulletin, 2015, 60, 428-434.	4.3	16
269	AntarcticaLC2000: The new Antarctic land cover database for the year 2000. Science China Earth Sciences, 2017, 60, 686-696.	2.3	16
270	Improving large-scale moso bamboo mapping based on dense Landsat time series and auxiliary data: a case study in Fujian Province, China. Remote Sensing Letters, 2018, 9, 1-10.	0.6	16

#	Article	IF	Citations
271	Healthy China: from words to actions. Lancet Public Health, The, 2019, 4, e438-e439.	4.7	16
272	Science support for Belt and Road. Science, 2019, 364, 513-513.	6.0	16
273	Evaluation of global land cover maps for cropland area estimation in the conterminous United States. International Journal of Digital Earth, 2015, 8, 102-117.	1.6	15
274	Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery. Remote Sensing, 2016, 8, 62.	1.8	15
275	Towards a global oil palm sample database: design and implications. International Journal of Remote Sensing, 2017, 38, 4022-4032.	1.3	15
276	A rapid assessment of landscape biodiversity using diversity profiles of arthropod morphospecies. Landscape Ecology, 2017, 32, 209-223.	1.9	15
277	Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017. Remote Sensing, 2020, 12, 3929.	1.8	15
278	Spatial Scaling of Gross Primary Productivity Over Sixteen Mountainous Watersheds Using Vegetation Heterogeneity and Surface Topography. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005848.	1.3	15
279	Modified N-FINDR endmember extraction algorithm for remote-sensing imagery. International Journal of Remote Sensing, 2015, 36, 2148-2162.	1.3	14
280	Exploring the potential role of feature selection in global land-cover mapping. International Journal of Remote Sensing, 2016, 37, 5491-5504.	1.3	14
281	Monitoring water level changes from retracked Jason-2 altimetry data: a case study in the Yangtze River, China. Remote Sensing Letters, 2017, 8, 399-408.	0.6	14
282	Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset. International Journal of Remote Sensing, 2018, 39, 4077-4087.	1.3	14
283	Spatial-temporal patterns of features selected using random forests: a case study of corn and soybeans mapping in the US. International Journal of Remote Sensing, 2019, 40, 269-283.	1.3	14
284	Improving 3-m Resolution Land Cover Mapping through Efficient Learning from an Imperfect 10-m Resolution Map. Remote Sensing, 2020, 12, 1418.	1.8	14
285	Recent expansion of oil palm plantations into carbon-rich forests. Nature Sustainability, 2022, 5, 574-577.	11.5	14
286	Tree density estimation in a tropical woodland ecosystem with multiangular MISR and MODIS data. Remote Sensing of Environment, 2008, 112, 2523-2537.	4.6	13
287	Towards a paradigm for open and free sharing of scientific data on global change science in china. Ecosystem Health and Sustainability, $2016, 2, .$	1.5	13
288	Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 2016, 6, 38020.	1.6	13

#	Article	IF	CITATIONS
289	A method for alpine wetland delineation and features of border: Zoigê Plateau, China. Chinese Geographical Science, 2017, 27, 784-799.	1.2	13
290	Environmental Drivers and Predicted Risk of Bacillary Dysentery in Southwest China. International Journal of Environmental Research and Public Health, 2017, 14, 782.	1.2	13
291	Exploring difference in land surface temperature between the city centres and urban expansion areas of China's major cities. International Journal of Remote Sensing, 2020, 41, 8965-8985.	1.3	13
292	Multiscale effects of habitat and surrounding matrices on waterbird diversity in the Yangtze River Floodplain. Landscape Ecology, 2021, 36, 179-190.	1.9	13
293	The changes in species composition mediate direct effects of climate change on future fire regimes of boreal forests in northeastern China. Journal of Applied Ecology, 2021, 58, 1336-1345.	1.9	13
294	Automated building change detection using UltraCamD images and existing CAD data. International Journal of Remote Sensing, 2010, 31, 1505-1517.	1.3	12
295	Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sensing, 2019, 11, 1425.	1.8	12
296	A new satellite-based indicator to identify spatiotemporal foraging areas for herbivorous waterfowl. Ecological Indicators, 2019, 99, 83-90.	2.6	12
297	Five tips for China to realize its co-targets of climate mitigation and Sustainable Development Goals (SDGs). Geography and Sustainability, 2020, 1, 245-249.	1.9	12
298	Estimation of wetland biodiversity based on the hydrological patterns and connectivity and its potential application in change detection and monitoring: A case study of the Sanjiang Plain, China. Science of the Total Environment, 2022, 805, 150291.	3.9	12
299	A Modified PSO Algorithm for Remote Sensing Image Template Matching. Photogrammetric Engineering and Remote Sensing, 2010, 76, 379-389.	0.3	11
300	Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	11
301	Freeboard and mass extraction of the disintegrated Mertz Ice Tongue with remote sensing and altimetry data. Remote Sensing of Environment, 2014, 144, 1-10.	4.6	11
302	Adaptively weighted decision fusion in 30 m land-cover mapping with Landsat and MODIS data. International Journal of Remote Sensing, 2015, 36, 3659-3674.	1.3	11
303	Sea Surface Wind Speed Inversion Using the Low Incident NRCS Measured by TRMM Precipitation Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 5262-5271.	2.3	11
304	A coupled modeling framework for predicting ecosystem carbon dynamics in boreal forests. Environmental Modelling and Software, 2017, 93, 332-343.	1.9	11
305	Climate response to introduction of the ESA CCI land cover data to the NCAR CESM. Climate Dynamics, 2021, 56, 4109-4127.	1.7	11
306	Urban Land Expansion from Scratch to Urban Agglomeration in the Federal District of Brazil in the Past 60 Years. International Journal of Environmental Research and Public Health, 2022, 19, 1032.	1,2	11

#	Article	IF	CITATIONS
307	A refined marker controlled watershed for building extraction from DSM and imagery. International Journal of Remote Sensing, 2010, 31, 1441-1452.	1.3	10
308	Measuring Detailed Urban Vegetation with Multisource High-Resolution Remote Sensing Imagery for Environmental Design and Planning. Environment and Planning B: Planning and Design, 2012, 39, 566-585.	1.7	10
309	A Spatial Distribution Equilibrium Evaluation of Health Service Resources at Community Grid Scale in Yichang, China. Sustainability, 2020, 12, 52.	1.6	10
310	Critical role of temporal contexts in evaluating urban cellular automata models. GIScience and Remote Sensing, 2021, 58, 799-811.	2.4	10
311	Wetlands explain most in the genetic divergence pattern of Oncomelania hupensis. Infection, Genetics and Evolution, 2014, 27, 436-444.	1.0	9
312	Assessing and Improving the Reliability of Volunteered Land Cover Reference Data. Remote Sensing, 2017, 9, 1034.	1.8	9
313	A steady-state approximation approach to simulate seasonal leaf dynamics of deciduous broadleaf forests via climate variables. Agricultural and Forest Meteorology, 2018, 249, 44-56.	1.9	9
314	High-Resolution Land Cover Mapping Through Learning With Noise Correction. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	9
315	Characteristics and trends of hillside urbanization in China from 2007 to 2017. Habitat International, 2022, 120, 102502.	2.3	9
316	Band Selection from Hyperspectral Data for Conifer Species Identification. Annals of GIS, 2000, 6, 137-142.	1.4	8
317	Healthy cities in China: a Lancet Commission. Lancet, The, 2016, 388, 1863-1864.	6.3	8
318	Statistical Volume Analysis: A New Endmember Extraction Method for Multi/Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 6100-6109.	2.7	8
319	Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation. International Journal of Environmental Research and Public Health, 2020, 17, 4509.	1.2	8
320	A large-scale, long time-series (1984â€'2020) of soybean mapping with phenological features: Heilongjiang Province as a test case. International Journal of Remote Sensing, 2021, 42, 7332-7356.	1.3	8
321	A neural network-based scheme coupled with the RPV model inversion package. Remote Sensing of Environment, 2008, 112, 3271-3283.	4.6	7
322	Meta-Prediction of <i>Bromus tectorum</i> Invasion in Central Utah, United States. Photogrammetric Engineering and Remote Sensing, 2009, 75, 689-701.	0.3	7
323	Grounding and calving cycle of Mertz Ice Tongue revealed by shallow Mertz Bank. Cryosphere, 2016, 10, 2043-2056.	1.5	7
324	Exploring the temporal density of Landsat observations for cropland mapping: experiments from Egypt, Ethiopia, and South Africa. International Journal of Remote Sensing, 2018, 39, 7328-7349.	1.3	7

#	Article	IF	CITATIONS
325	Use of spatial autocorrelation and time series Landsat images for long-term monitoring of surface water shrinkage and expansion in Guanting Reservoir, China. Remote Sensing Letters, 2019, 10, 1192-1200.	0.6	7
326	Exploring intra-annual variation in cropland classification accuracy using monthly, seasonal, and yearly sample set. International Journal of Remote Sensing, 0 , , $1-16$.	1.3	7
327	Towards an open and synergistic framework for mapping global land cover. PeerJ, 2021, 9, e11877.	0.9	7
328	Applying class-based feature extraction approaches for supervised classification of hyperspectral imagery. Canadian Journal of Remote Sensing, 2007, 33, 162-175.	1.1	6
329	The Potential of Spectral Indices in Detecting Various Stages of Afforestation over the Loess Plateau Region of China. Remote Sensing, 2018, 10, 1492.	1.8	6
330	Comparing the Use of Spatially Explicit Indicators and Conventional Indicators in the Evaluation of Healthy Cities: A Case Study in Shenzhen, China. International Journal of Environmental Research and Public Health, 2020, 17, 7409.	1.2	6
331	Detection of Recently Constructed Multiâ€storey Buildings Using SPOT Panchromatic and Landsat TM/ETM+ Data. Geocarto International, 2005, 20, 3-13.	1.7	5
332	Automatic extraction of floating ice at Antarctic continental margin from remotely sensed imagery using object-based segmentation. Science China Earth Sciences, 2012, 55, 622-632.	2.3	5
333	Biodiversity estimation of the western region of Ghana using arthropod mean morphospecies abundance. Biodiversity and Conservation, 2017, 26, 2083-2097.	1.2	5
334	Exploring the addition of Landsat 8 thermal band in land-cover mapping. International Journal of Remote Sensing, 2019, 40, 4544-4559.	1.3	5
335	A spatialized digital database for all bird species in China. Science China Life Sciences, 2019, 62, 661-667.	2.3	5
336	Extraction of Old Towns in Hangzhou (2000–2018) from Landsat Time Series Image Stacks. Remote Sensing, 2021, 13, 2438.	1.8	5
337	Food Delivery Platform: A Potential Tool for Monitoring the Food Environment and Mitigating Overweight/Obesity in China. Frontiers in Nutrition, 2021, 8, 703090.	1.6	5
338	Satellite imagery can support water planning in the Central Valley. California Agriculture, 2009, 63, 220-224.	0.5	5
339	The land-sea interface mapping: China's coastal land covers at 10Âm for 2020. Science Bulletin, 2022, 67, 1750-1754.	4.3	5
340	Texture analysis for urban spatial pattern study using SPOT imagery. , 0, , .		4
341	Change Detection from SPOT-Panchromatic Imagery at the Urban-rural Fringe of Ho Chi Minh City, Vietnam. Annals of GIS, 2004, 10, 42-48.	1.4	4
342	Separation of Dead Tree Crowns from the Oak Woodland Forest Mosaic by Integrating Spatial Information. Geocarto International, 2005, 20, 15-20.	1.7	4

#	Article	IF	CITATIONS
343	Accuracies of Global Land Cover Maps Checked against Fluxnet Sites. Science Foundation in China, 2009, 16, 31-35.	0.3	4
344	The importance of data type, laser spot density and modelling method for vegetation height mapping in continental China. International Journal of Remote Sensing, 2016, 37, 6127-6148.	1.3	4
345	A systematic network-based migratory bird monitoring and protection system is needed in China. Science Bulletin, 2021, 66, 955-957.	4.3	4
346	The nature and scale of the response to climate change will determine the human health for centuries to come in China. Chinese Science Bulletin, 2020, 65, 12-17.	0.4	4
347	Winter Warming in North America Induced by Urbanization in China. Geophysical Research Letters, 2021, 48, e2021GL095465.	1.5	4
348	An Indicator Measuring the Influence of the Online Public Food Environment: An Analytical Framework and Case Study. Frontiers in Nutrition, 0, 9, .	1.6	4
349	Estimating net primary productivity of terrestrial vegetation based on remote sensing: a case study in Inner Mongolia, China. , 0, , .		3
350	Spatial and Temporal Change of Urban Vegetation Distribution in Beijing., 2008,, 346-356.		3
351	Unsupervised spectropolarimetric imagery clustering fusion. Journal of Applied Remote Sensing, 2009, 3, 033535.	0.6	3
352	Exploring the correlations between ten monthly climatic variables and the vegetation index of four different crop types at the global scale. Remote Sensing Letters, 2017, 8, 752-760.	0.6	3
353	An ocean current inversion accuracy analysis based on a Doppler spectrum model. Acta Oceanologica Sinica, 2017, 36, 101-107.	0.4	3
354	Identifying Potential Cropland Losses When Conserving 30% and 50% Earth with Different Approaches and Spatial Scales. Land, 2021, 10, 704.	1.2	3
355	Incorporating deep features in the analysis of tissue microarray images. Statistics and Its Interface, 2019, 12, 283-293.	0.2	3
356	Road Network Extraction from High Resolution Airborne Digital Camera Data. Annals of GIS, 1997, 3, 51-59.	1.4	2
357	Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery. Proceedings of SPIE, 2007, , .	0.8	2
358	A readapted Malone schistosome transmission index model. Acta Tropica, 2009, 109, 98-102.	0.9	2
359	Multi-algorithm ensemble reconstruction of surface soil moisture over China from AMSR-E. , 2012, , .		2
360	China's new leaders must keep science in focus. Nature, 2012, 491, 161-161.	13.7	2

#	Article	IF	Citations
361	A structured approach to the analysis of remote sensing images. International Journal of Remote Sensing, 2019, 40, 7874-7897.	1.3	2
362	Reduction of Human Mobility Matters during Early COVID-19 Outbreaks: Evidence from India, Japan and China. International Journal of Environmental Research and Public Health, 2021, 18, 2826.	1.2	2
363	Photo Ecometrics for Natural Resource Monitoring. , 2002, , 65-80.		2
364	Cropland heterogeneity changes on the Northeast China Plain in the last three decades (1980s–2010s). PeerJ, 2020, 8, e9835.	0.9	2
365	Unprecedented challenges from climate change to human health will require an unprecedented global response. Chinese Science Bulletin, 2020, 65, 665-670.	0.4	2
366	A global forest reference set with time series annual change information from 2000 to 2020. International Journal of Remote Sensing, 2022, 43, 3152-3162.	1.3	2
367	Metabolic and Phenological Response of Vegetation to Temperature Gradient: Evidence Derived from AVHRR Data. Annals of GIS, 1996, 2, 64-72.	1.4	1
368	Predicting Land-Cover Changes with Gray Systems Theory and Multitemporal Aerial Photographs. Annals of GIS, 1998, 4, 73-79.	1.4	1
369	Building change detection using aerial images and existing 3D data., 2009,,.		1
370	Monitoring soil moisture change in Africa over past 20 years with using passive microwave remote sensing, , $2011, , .$		1
371	Residential area extraction by integrating supervised/unsupervised/contextual/object-based methods with moderate resolution remotely sensed data. , 2011, , .		1
372	Impact of initialization on nonnegative matrix fraction for endmember extraction for hyperspectral imagery. , $2016, \ldots$		1
373	Christiana Figueres joins The Lancet Countdown—delivering on the promise of Paris. Lancet, The, 2017, 389, e16.	6.3	1
374	Using Internet Search Queries to Assess Public Awareness of the Healthy Cities Approach: A Case Study in Shenzhen, China. International Journal of Environmental Research and Public Health, 2021, 18, 4264.	1.2	1
375	Oil palm modelling in the global land surface model ORCHIDEE-MICT. Geoscientific Model Development, 2021, 14, 4573-4592.	1.3	1
376	Mapping Residential Vacancies with Multisource Spatiotemporal Data: A Case Study in Beijing. Remote Sensing, 2022, 14, 376.	1.8	1
377	Diversity in global urban sprawl patterns revealed by Zipfian dynamics. Remote Sensing Letters, 2023, 14, 565-575.	0.6	1
378	Multisource data integration with neural networks: optimal selection of net variables for lithologic classification. , 0 , , .		0

#	Article	IF	CITATIONS
379	Linear Feature Modeling with Curve Fitting: Parametric Polynomial Techniques. Annals of GIS, 1997, 3, 7-19.	1.4	O
380	Comparison of two vegetation classification techniques in China based on NOAA/AVHRR data and climate-vegetation indices of the Holdridge life zone. , 0 , , .		0
381	Assessment of NDVI Composites Using Merged NOAA-14 and NOAA-15 AVHRR Data. Annals of GIS, 2002, 8, 31-38.	1.4	O
382	An Automatic Method for Matching 2D ADS40 Images onto a 3D Surface Model. Annals of GIS, 2006, 12, 92-97.	1.4	0
383	Susceptibility and Infection Risk of Schistosomiasis Disease. Annals of GIS, 2006, 12, 44-50.	1.4	O
384	Guest editors' preface: Geoinformatics 2007. International Journal of Remote Sensing, 2010, 31, 1373-1377.	1.3	0
385	A simplified image fusion technique with sensor spectral response. , 2010, , .		O
386	A new maximum distance method based on barycentric coordinate for endmember extraction. , 2014, , .		0
387	The ocean surface current inversion mehtod of Doppler scatterometer. , 2017, , .		O
388	Health and climate change – Authors' reply. Lancet, The, 2019, 393, 2197-2198.	6.3	0
389	Perspectives on Space and Time in US and Chinese Science. , 2015, , 7-19.		O
390	Urban-Expansion Driven Farmland Loss Follows with the Environmental Kuznets Curve Hypothesis: Evidence from Temporal Analysis in Beijing, China. Communications in Computer and Information Science, 2020, , 394-412.	0.4	0
391	A study of the serious conflicts between oil palm expansion and biodiversity conservation using high-resolution remote sensing. Remote Sensing Letters, 2023, 14, 654-668.	0.6	0