Cristina SÃjez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790547/publications.pdf Version: 2024-02-01

CDISTINA SÃ:EZ

#	Article	IF	CITATIONS
1	Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research, 2005, 39, 2687-2703.	5.3	354
2	Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 2009, 90, 410-420.	3.8	330
3	Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 2007, 169, 198-204.	4.0	217
4	Electrochemical Treatment of 4-Nitrophenol-Containing Aqueous Wastes Using Boron-Doped Diamond Anodes. Industrial & Engineering Chemistry Research, 2004, 43, 1944-1951.	1.8	208
5	Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials, 2008, 151, 44-51.	6.5	190
6	Synthesis of novel oxidants by electrochemical technology. Journal of Applied Electrochemistry, 2009, 39, 2143-2149.	1.5	190
7	Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. Environmental Science & Technology, 2005, 39, 7234-7239.	4.6	181
8	Study of the Electrocoagulation Process Using Aluminum and Iron Electrodes. Industrial & Engineering Chemistry Research, 2007, 46, 6189-6195.	1.8	178
9	Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere, 2007, 67, 832-838.	4.2	167
10	Electrochemical production of perchlorates using conductive diamond electrolyses. Chemical Engineering Journal, 2011, 166, 710-714.	6.6	148
11	Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catalysis Today, 2010, 151, 173-177.	2.2	146
12	Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochimica Acta, 2006, 52, 325-331.	2.6	138
13	Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism. Journal of Applied Electrochemistry, 2003, 33, 917-927.	1.5	134
14	Removal of nitrates from groundwater by electrocoagulation. Chemical Engineering Journal, 2011, 171, 1012-1017.	6.6	133
15	The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. Journal of Hazardous Materials, 2009, 163, 158-164.	6.5	128
16	Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 2004, 49, 4641-4650.	2.6	122
17	Electrochemical Oxidation of Azoic Dyes with Conductive-Diamond Anodes. Industrial & Engineering Chemistry Research, 2006, 45, 3468-3473.	1.8	121
18	Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions. Journal of Applied Electrochemistry, 2004, 34, 87-94.	1.5	115

#	Article	IF	CITATIONS
19	Electrochemical Synthesis of Peroxodiphosphate Using Boron-Doped Diamond Anodes. Journal of the Electrochemical Society, 2005, 152, D191.	1.3	114
20	Electrochemical phosphates removal using iron and aluminium electrodes. Chemical Engineering Journal, 2011, 172, 137-143.	6.6	108
21	Electrochemical jet-cell for the in-situ generation of hydrogen peroxide. Electrochemistry Communications, 2016, 71, 65-68.	2.3	104
22	Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison. Water Research, 2009, 43, 2131-2138.	5.3	101
23	Electrochemical incineration of dyes using a boron-doped diamond anode. Journal of Chemical Technology and Biotechnology, 2007, 82, 575-581.	1.6	99
24	The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Separation and Purification Technology, 2012, 88, 46-51.	3.9	97
25	Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 1331-1337.	1.6	96
26	Electrochemical technologies for the regeneration of urban wastewaters. Electrochimica Acta, 2010, 55, 8160-8164.	2.6	91
27	Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. Journal of Hazardous Materials, 2016, 319, 93-101.	6.5	91
28	Environmental applications of electrochemical technology. What is needed to enable full-scale applications?. Current Opinion in Electrochemistry, 2019, 16, 149-156.	2.5	87
29	Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes. Electrochimica Acta, 2008, 53, 2144-2153.	2.6	86
30	Electrochemical dosing of iron and aluminum in continuous processes: A key step to explain electro-coagulation processes. Separation and Purification Technology, 2012, 98, 102-108.	3.9	86
31	Electrochemical Oxidation of Polyhydroxybenzenes on Boron-Doped Diamond Anodes. Industrial & Engineering Chemistry Research, 2004, 43, 6629-6637.	1.8	85
32	Electrochemical treatment of the effluent of a fine chemical manufacturing plant. Journal of Hazardous Materials, 2006, 138, 173-181.	6.5	83
33	Effect of the Operating Conditions on the Oxidation Mechanisms in Conductive-Diamond Electrolyses. Journal of the Electrochemical Society, 2007, 154, E37.	1.3	83
34	Electrocatalytic properties of diamond in the oxidation of a persistant pollutant. Applied Catalysis B: Environmental, 2009, 89, 645-650.	10.8	83
35	Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. Chemical Engineering Journal, 2012, 184, 221-227.	6.6	82
36	Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2016, 188, 305-312.	10.8	82

#	Article	IF	CITATIONS
37	Improving the Efficiency of Carbon Cloth for the Electrogeneration of H ₂ O ₂ : Role of Polytetrafluoroethylene and Carbon Black Loading. Industrial & Engineering Chemistry Research, 2017, 56, 12588-12595.	1.8	80
38	Combined soil washing and CDEO for the removal of atrazine from soils. Journal of Hazardous Materials, 2015, 300, 129-134.	6.5	75
39	Removal of sulfate from mining waters by electrocoagulation. Separation and Purification Technology, 2017, 182, 87-93.	3.9	73
40	Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation. Journal of Hazardous Materials, 2017, 339, 232-238.	6.5	73
41	Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters. Chemical Engineering Journal, 2012, 211-212, 463-469.	6.6	71
42	Electroremediation of a natural soil polluted with phenanthrene in a pilot plant. Journal of Hazardous Materials, 2014, 265, 142-150.	6.5	71
43	Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2015, 166-167, 454-459.	10.8	69
44	Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Separation and Purification Technology, 2011, 79, 15-19.	3.9	67
45	The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine. Electrochemistry Communications, 2015, 55, 26-29.	2.3	64
46	Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chemical Engineering Journal, 2017, 310, 581-588.	6.6	61
47	Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Water Research, 2018, 128, 383-392.	5.3	61
48	Production of oxidants via electrolysis of carbonate solutions with conductive-diamond anodes. Chemical Engineering Journal, 2013, 230, 272-278.	6.6	59
49	Effect of pressure on the electrochemical generation of hydrogen peroxide in undivided cells on carbon felt electrodes. Electrochimica Acta, 2017, 248, 169-177.	2.6	59
50	Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere, 2013, 93, 1720-1725.	4.2	58
51	Multiphysics Implementation of Electrokinetic Remediation Models for Natural Soils and Porewaters. Electrochimica Acta, 2017, 225, 93-104.	2.6	58
52	Electrochemical treatment of the pollutants generated in an ink-manufacturing process. Journal of Hazardous Materials, 2007, 146, 552-557.	6.5	57
53	Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2014, 144, 121-128.	10.8	57
54	Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. Journal of Applied Electrochemistry, 2007, 38, 93-100.	1.5	56

#	Article	IF	CITATIONS
55	Removal of sulfamethoxazole from waters and wastewaters by conductiveâ€diamond electrochemical oxidation. Journal of Chemical Technology and Biotechnology, 2012, 87, 1441-1449.	1.6	56
56	Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone. Electrochimica Acta, 2014, 140, 20-26.	2.6	56
57	Use of low current densities in electrolyses with conductive-diamond electrochemical — Oxidation to disinfect treated wastewaters for reuse. Electrochemistry Communications, 2011, 13, 1268-1270.	2.3	55
58	Scale-up on electrokinetic remediation: Engineering and technological parameters. Journal of Hazardous Materials, 2016, 315, 135-143.	6.5	55
59	Development of an innovative approach for low-impact wastewater treatment: A microfluidic flow-through electrochemical reactor. Chemical Engineering Journal, 2018, 351, 766-772.	6.6	55
60	On the applications of peroxodiphosphate produced by BDD-electrolyses. Chemical Engineering Journal, 2013, 233, 8-13.	6.6	54
61	The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochimica Acta, 2016, 187, 119-124.	2.6	54
62	Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant. Chemical Engineering Journal, 2016, 285, 128-136.	6.6	54
63	Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils. Journal of Hazardous Materials, 2017, 322, 413-420.	6.5	53
64	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?. Chemosphere, 2017, 166, 549-555.	4.2	53
65	Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation. Journal of Environmental Management, 2017, 195, 216-223.	3.8	51
66	Influence of the characteristics of p-Si BDD anodes on the efficiency of peroxodiphosphate electrosynthesis process. Electrochemistry Communications, 2008, 10, 602-606.	2.3	50
67	Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. Journal of Cleaner Production, 2019, 211, 1259-1267.	4.6	50
68	Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochimica Acta, 2016, 190, 371-377.	2.6	49
69	Electrochemical Degradation of a Real Pharmaceutical Effluent. Water, Air, and Soil Pollution, 2012, 223, 2685-2694.	1.1	48
70	Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. Journal of Applied Electrochemistry, 2015, 45, 799-808.	1.5	48
71	Disinfection of urine by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2018, 229, 63-70.	10.8	48
72	The jet aerator as oxygen supplier for the electrochemical generation of H2O2. Electrochimica Acta, 2017, 246, 466-474.	2.6	47

#	Article	lF	CITATIONS
73	A comparison between Conductive-Diamond Electrochemical Oxidation and other Advanced Oxidation Processes for the treatment of synthetic melanoidins. Journal of Hazardous Materials, 2009, 164, 120-125.	6.5	46
74	A wind-powered BDD electrochemical oxidation process for the removal of herbicides. Journal of Environmental Management, 2015, 158, 36-39.	3.8	46
75	Electrochemically assisted fences for the electroremediation of soils polluted with 2,4-D: A case study in a pilot plant. Separation and Purification Technology, 2015, 156, 234-241.	3.9	46
76	Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. Chemosphere, 2018, 199, 477-485.	4.2	46
77	Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes. Journal of Electroanalytical Chemistry, 2020, 857, 113756.	1.9	46
78	Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Separation and Purification Technology, 2020, 237, 116345.	3.9	46
79	Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Science of the Total Environment, 2020, 725, 138430.	3.9	46
80	Electrochemical synthesis of ferrate using boron doped diamond anodes. Electrochemistry Communications, 2007, 9, 2286-2290.	2.3	45
81	Ten steps modeling of electrolysis processes by using neural networks. Environmental Modelling and Software, 2010, 25, 74-81.	1.9	45
82	Application of electrokinetic soil flushing to four herbicides: A comparison. Chemosphere, 2016, 153, 205-211.	4.2	44
83	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species. Chemosphere, 2017, 166, 540-548.	4.2	44
84	Electrochemical Oxidation of Wastewaters Polluted with Aromatics and Heterocyclic Compounds. Journal of the Electrochemical Society, 2007, 154, E165.	1.3	43
85	Removal of triclosan by conductiveâ€diamond electrolysis and sonoelectrolysis. Journal of Chemical Technology and Biotechnology, 2013, 88, 823-828.	1.6	43
86	A microfluidic flow-through electrochemical reactor for wastewater treatment: A proof-of-concept. Electrochemistry Communications, 2017, 82, 85-88.	2.3	43
87	Removal of phenanthrene from synthetic kaolin soils by electrokinetic soil flushing. Separation and Purification Technology, 2014, 132, 33-40.	3.9	42
88	Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate. Separation and Purification Technology, 2016, 167, 127-135.	3.9	42
89	What happens to inorganic nitrogen species during conductive diamond electrochemical oxidation of real wastewater?. Electrochemistry Communications, 2016, 67, 65-68.	2.3	41
90	Electrosynthesis of ferrates with diamond anodes. AICHE Journal, 2008, 54, 1600-1607.	1.8	40

#	Article	IF	CITATIONS
91	Removal of herbicide 2,4-D using conductive-diamond sono-electrochemical oxidation. Separation and Purification Technology, 2015, 149, 24-30.	3.9	40
92	Removal of pesticide 2,4-D by conductive-diamond photoelectrochemical oxidation. Applied Catalysis B: Environmental, 2016, 180, 733-739.	10.8	40
93	Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes. Ultrasonics Sonochemistry, 2017, 34, 115-122.	3.8	40
94	Is it really important the addition of salts for the electrolysis of soil washing effluents?. Electrochimica Acta, 2017, 246, 372-379.	2.6	40
95	On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton. Separation and Purification Technology, 2019, 208, 123-129.	3.9	40
96	Modelling of wastewater electrocoagulation processesPart I. General description and application to kaolin-polluted wastewaters. Separation and Purification Technology, 2008, 60, 155-161.	3.9	39
97	Electrokinetic flushing with surrounding electrode arrangements for the remediation of soils that are polluted with 2,4-D: A case study in a pilot plant. Science of the Total Environment, 2016, 545-546, 256-265.	3.9	39
98	Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. Chemosphere, 2020, 238, 124575.	4.2	39
99	Detoxification of synthetic industrial wastewaters using electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 352-358.	1.6	38
100	Electrooxidation of Brown-Colored Molasses Wastewater. Effect of the Electrolyte Salt on the Process Efficiency. Industrial & Engineering Chemistry Research, 2009, 48, 1298-1301.	1.8	37
101	Conductive-Diamond Electrochemical Oxidation of Surfactant-Aided Soil-Washing Effluents. Industrial & Engineering Chemistry Research, 2010, 49, 9631-9635.	1.8	37
102	A review on disinfection technologies for controlling the antibiotic resistance spread. Science of the Total Environment, 2021, 797, 149150.	3.9	37
103	A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2H2. International Journal of Hydrogen Energy, 2006, 31, 1780-1790.	3.8	36
104	Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	36
105	Removal of pharmaceuticals from the urine of polymedicated patients: A first approach. Chemical Engineering Journal, 2018, 331, 606-614.	6.6	36
106	Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes. Applied Catalysis B: Environmental, 2017, 213, 190-197.	10.8	35
107	The pressurized jet aerator: A new aeration system for high-performance H2O2 electrolyzers. Electrochemistry Communications, 2018, 89, 19-22.	2.3	35
108	A new strategy for the electrolytic removal of organics based on adsorption onto granular activated carbon. Electrochemistry Communications, 2018, 90, 47-50.	2.3	35

#	Article	IF	CITATIONS
109	Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. Science of the Total Environment, 2020, 736, 139536.	3.9	35
110	Metoprolol abatement from wastewaters by electrochemical oxidation with boron doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2012, 87, 225-231.	1.6	34
111	High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes. Environmental Science and Pollution Research, 2014, 21, 8442-8450.	2.7	34
112	UV assisted electrochemical technologies for the removal of oxyfluorfen from soil washing wastes. Chemical Engineering Journal, 2017, 318, 2-9.	6.6	34
113	Combined electrooxidation and assisted electrochemical coagulation of aqueous phenol wastes. Journal of Applied Electrochemistry, 2002, 32, 1241-1246.	1.5	33
114	Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. Journal of Environmental Management, 2016, 171, 260-266.	3.8	33
115	Electro-bioremediation at the prototype scale: What it should be learned for the scale-up. Chemical Engineering Journal, 2018, 334, 2030-2038.	6.6	33
116	Modelling of wastewater electrocoagulation processesPart II: Application to dye-polluted wastewaters and oil-in-water emulsions. Separation and Purification Technology, 2008, 60, 147-154.	3.9	32
117	Study of the production of hydrogen bubbles at low current densities for electroflotation processes. Journal of Chemical Technology and Biotechnology, 2010, 85, 1368-1373.	1.6	32
118	Electrolysis of progesterone with conductiveâ€diamond electrodes. Journal of Chemical Technology and Biotechnology, 2012, 87, 1173-1178.	1.6	32
119	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with linear rows of electrodes. Chemical Engineering Journal, 2016, 294, 65-72.	6.6	32
120	Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater. Separation and Purification Technology, 2019, 208, 201-207.	3.9	32
121	Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. Chemosphere, 2008, 72, 1080-1085.	4.2	31
122	Sonoelectrolysis of Wastewaters Polluted with Dimethyl Phthalate. Industrial & Engineering Chemistry Research, 2013, 52, 9674-9682.	1.8	31
123	Combining bioadsorption and photoelectrochemical oxidation for the treatment of soilâ€washing effluents polluted with herbicide 2,4â€D. Journal of Chemical Technology and Biotechnology, 2017, 92, 83-89.	1.6	31
124	Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Separation and Purification Technology, 2018, 192, 196-204.	3.9	31
125	The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. ChemElectroChem, 2019, 6, 1376-1384.	1.7	31
126	Modelling and cost evaluation of electro-coagulation processes for the removal of anions from water. Separation and Purification Technology, 2013, 107, 219-227.	3.9	30

#	Article	IF	CITATIONS
127	ZVI – Reactive barriers for the remediation of soils polluted with clopyralid: Are they really Worth?. Chemical Engineering Journal, 2018, 350, 100-107.	6.6	30
128	Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water?. Chemosphere, 2018, 209, 346-352.	4.2	30
129	Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Separation and Purification Technology, 2019, 208, 110-115.	3.9	30
130	The Role of the Characteristics of p-Si BDD Anodes on the Efficiency of Wastewater Electro-oxidation Processes. Electrochemical and Solid-State Letters, 2008, 11, E15.	2.2	29
131	Technical and economic comparison of conventional and electrochemical coagulation processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 702-710.	1.6	29
132	Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 2015, 136, 281-288.	4.2	29
133	Photoelectrocatalytic Oxidation of Methyl Orange on a TiO ₂ Nanotubular Anode Using a Flow Cell. Chemical Engineering and Technology, 2016, 39, 135-141.	0.9	29
134	Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. Catalysis Today, 2017, 280, 192-198.	2.2	29
135	Electrochemical synthesis of ferrate in presence of ultrasound using boron doped diamond anodes. Electrochemistry Communications, 2010, 12, 644-646.	2.3	28
136	Electro-osmotic fluxes in multi-well electro-remediation processes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1549-1557.	0.9	28
137	Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. Separation and Purification Technology, 2012, 98, 88-93.	3.9	28
138	Electrochemical removal of dimethyl phthalate with diamond anodes. Journal of Chemical Technology and Biotechnology, 2014, 89, 282-289.	1.6	28
139	Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. Separation and Purification Technology, 2017, 175, 428-434.	3.9	28
140	Electro-disinfection with BDD-electrodes featuring PEM technology. Separation and Purification Technology, 2020, 248, 117081.	3.9	28
141	New insights about the electrochemical production of ozone. Current Opinion in Electrochemistry, 2021, 27, 100697.	2.5	28
142	Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2,4-D. Chemical Engineering Journal, 2015, 277, 64-69.	6.6	27
143	Enhanced electrolytic treatment for the removal of clopyralid and lindane. Chemosphere, 2019, 234, 132-138.	4.2	27
144	Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. Separation and Purification Technology, 2019, 208, 100-109.	3.9	27

#	Article	IF	CITATIONS
145	Photoelectrolysis of clopyralid wastes with a novel laser-prepared MMO-RuO2TiO2 anode. Chemosphere, 2020, 244, 125455.	4.2	27
146	Understanding ozone generation in electrochemical cells at mild pHs. Electrochimica Acta, 2021, 376, 138033.	2.6	27
147	Pressurized electro-Fenton for the reduction of the environmental impact of antibiotics. Separation and Purification Technology, 2021, 276, 119398.	3.9	27
148	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. Journal of Electroanalytical Chemistry, 2015, 757, 144-149.	1.9	26
149	Electro-ozonizers: A new approach for an old problem. Separation and Purification Technology, 2020, 241, 116701.	3.9	26
150	Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. Science of the Total Environment, 2020, 725, 138379.	3.9	26
151	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with the surrounding arrangements of electrodes. Science of the Total Environment, 2016, 559, 94-102.	3.9	25
152	Testing different strategies for the remediation of soils polluted with lindane. Chemical Engineering Journal, 2020, 381, 122674.	6.6	25
153	Influence of the Type of Surfactant on the Mobility of Flushing Fluids for Electro-Remediation Processes. Separation Science and Technology, 2011, 46, 2148-2156.	1.3	24
154	Using a new photoâ€reactor to promote conductiveâ€diamond electrochemical oxidation of dimethyl phthalate. Journal of Chemical Technology and Biotechnology, 2014, 89, 1251-1258.	1.6	24
155	Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils. Science of the Total Environment, 2018, 640-641, 629-636.	3.9	24
156	Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes. Chemosphere, 2021, 270, 129344.	4.2	24
157	Toward the Development of Efficient Electro-Fenton Reactors for Soil Washing Wastes through Microfluidic Cells. Industrial & Engineering Chemistry Research, 2018, 57, 10709-10717.	1.8	23
158	Testing the role of electrode materials on the electro-Fenton and photoelectro-Fenton degradation of clopyralid. Journal of Electroanalytical Chemistry, 2020, 871, 114291.	1.9	23
159	Improvement of electrochemical oxidation efficiency through combination with adsorption processes. Journal of Environmental Management, 2020, 262, 110364.	3.8	23
160	Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. Journal of Hazardous Materials, 2021, 410, 124548.	6.5	23
161	The role of chloramines on the electrodisinfection of Klebsiella pneumoniae in hospital urines. Chemical Engineering Journal, 2021, 409, 128253.	6.6	23
162	Improvements in the Electrochemical Production of Ferrates with Conductive Diamond Anodes Using Goethite as Raw Material and Ultrasound. Industrial & Engineering Chemistry Research, 2011, 50, 7073-7076.	1.8	22

#	Article	IF	CITATIONS
163	Conductive-diamond electrochemical oxidation of chlorpyrifos in wastewater and identification of its main degradation products by LC–TOFMS. Chemosphere, 2012, 89, 1169-1176.	4.2	22
164	Removal of chlorsulfuron and 2,4-D from spiked soil using reversible electrokinetic adsorption barriers. Separation and Purification Technology, 2017, 178, 147-153.	3.9	22
165	Treatment of Soil-Washing Effluents Polluted with Herbicide Oxyfluorfen by Combined Biosorption–Electrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 1903-1910.	1.8	22
166	Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. Separation and Purification Technology, 2018, 194, 19-25.	3.9	22
167	Electrochemical Synthesis of Peroxyacetic Acid Using Conductive Diamond Electrodes. Industrial & Engineering Chemistry Research, 2011, 50, 10889-10893.	1.8	21
168	Improving the catalytic effect of peroxodisulfate and peroxodiphosphate electrochemically generated at diamond electrode by activation with light irradiation. Chemosphere, 2018, 207, 774-780.	4.2	21
169	Coupling Ultrasound to the Electroâ€Oxidation of Methyl Paraben Synthetic Wastewater: Effect of Frequency and Supporting Electrolyte. ChemElectroChem, 2019, 6, 1199-1205.	1.7	21
170	Testing and scaling-up of a novel Ti/Ru0.7Ti0.3O2 mesh anode in a microfluidic flow-through reactor. Chemical Engineering Journal, 2020, 398, 125568.	6.6	21
171	Electrochemical generation of ozone using a PEM electrolyzer at acidic pHs. Separation and Purification Technology, 2021, 267, 118672.	3.9	21
172	Arsenic Removal from High-Arsenic Water Sources by Coagulation and Electrocoagulation. Separation Science and Technology, 2013, 48, 508-514.	1.3	20
173	Removal of oxyfluorfen from spiked soils using electrokinetic fences. Separation and Purification Technology, 2016, 167, 55-62.	3.9	20
174	Photocatalytic performance of Ti/MMO/ZnO at degradation of levofloxacin: Effect of pH and chloride anions. Journal of Electroanalytical Chemistry, 2021, 880, 114894.	1.9	20
175	Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine. Electrochimica Acta, 2021, 392, 139012.	2.6	20
176	Disinfection of polymicrobial urines by electrochemical oxidation: Removal of antibiotic-resistant bacteria and genes. Journal of Hazardous Materials, 2022, 426, 128028.	6.5	20
177	The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques. Electrocatalysis, 2013, 4, 252-258.	1.5	19
178	Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environmental Science and Pollution Research, 2016, 23, 19713-19722.	2.7	19
179	Towards the scaleâ€up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D. Journal of Chemical Technology and Biotechnology, 2016, 91, 742-747.	1.6	19
180	Can the substrate of the diamond anodes influence on the performance of the electrosynthesis of oxidants?. Journal of Electroanalytical Chemistry, 2019, 850, 113416.	1.9	19

#	Article	IF	CITATIONS
181	Effects of ultrasound irradiation on the electrochemical treatment of wastes containing micelles. Applied Catalysis B: Environmental, 2019, 248, 108-114.	10.8	19
182	The Role of Mediated Oxidation on the Electro-irradiated Treatment of Amoxicillin and Ampicillin Polluted Wastewater. Catalysts, 2019, 9, 9.	1.6	19
183	Techno-economic analysis of the scale-up process of electrochemically-assisted soil remediation. Journal of Environmental Management, 2019, 231, 570-575.	3.8	19
184	A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. Chemosphere, 2020, 238, 124854.	4.2	19
185	Clopyralid degradation by AOPs enhanced with zero valent iron. Journal of Hazardous Materials, 2020, 392, 122282.	6.5	19
186	Electrochemically-based hybrid oxidative technologies for the treatment of micropollutants in drinking water. Chemical Engineering Journal, 2021, 414, 128531.	6.6	19
187	Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chemical Engineering Journal, 2021, 420, 129999.	6.6	19
188	Electrochemical synthesis of perbromate using conductive-diamond anodes. Journal of Applied Electrochemistry, 2010, 40, 1715-1719.	1.5	18
189	Electrochemical coagulation of treated wastewaters for reuse. Desalination and Water Treatment, 2013, 51, 3381-3388.	1.0	18
190	Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine. Journal of the Electrochemical Society, 2018, 165, E262-E267.	1.3	18
191	Electrolysis with diamond anodes: Eventually, there are refractory species!. Chemosphere, 2018, 195, 771-776.	4.2	18
192	Removal of antibiotic resistant bacteria by electrolysis with diamond anodes: A pretreatment or a tertiary treatment?. Journal of Water Process Engineering, 2020, 38, 101557.	2.6	18
193	A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide. Current Opinion in Electrochemistry, 2021, 27, 100685.	2.5	18
194	Influence of the supporting electrolyte on the removal of ionic liquids by electrolysis with diamond anodes. Catalysis Today, 2018, 313, 203-210.	2.2	17
195	Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil. Journal of Environmental Management, 2016, 171, 128-132.	3.8	16
196	A comparison of the electrolysis of soil washing wastes with active and non-active electrodes. Chemosphere, 2019, 225, 19-26.	4.2	16
197	Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation. Journal of Hazardous Materials, 2019, 372, 77-84.	6.5	16
198	Removal of algae from biological cultures: a challenge for electrocoagulation?. Journal of Chemical Technology and Biotechnology, 2016, 91, 82-87.	1.6	15

#	Article	IF	CITATIONS
199	A new electrochemically-based process for the removal of perchloroethylene from gaseous effluents. Chemical Engineering Journal, 2019, 361, 609-614.	6.6	15
200	Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material. Journal of Electroanalytical Chemistry, 2020, 864, 114084.	1.9	15
201	Scale-up of electrokinetic permeable reactive barriers for the removal of organochlorine herbicide from spiked soils. Journal of Hazardous Materials, 2021, 417, 126078.	6.5	15
202	Electro-Absorbers: A Comparison on Their Performance with Jet-Absorbers and Absorption Columns. Catalysts, 2020, 10, 653.	1.6	14
203	Towards a more realistic heterogeneous electro-Fenton. Journal of Electroanalytical Chemistry, 2021, 895, 115475.	1.9	14
204	Is it worth the use of bipolar electrodes in electrolytic wastewater treatment processes?. Chemical Engineering Journal, 2015, 264, 310-315.	6.6	13
205	Integration of anodic and cathodic processes for the synergistic electrochemical production of peracetic acid. Electrochemistry Communications, 2016, 73, 1-4.	2.3	13
206	Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Separation and Purification Technology, 2020, 230, 115876.	3.9	13
207	Jet electro-absorbers for the treatment of gaseous perchloroethylene wastes. Chemical Engineering Journal, 2020, 395, 125096.	6.6	13
208	Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. Chemosphere, 2021, 271, 129451.	4.2	13
209	Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules, 2021, 26, 6813.	1.7	13
210	Optimization of a combined electrocoagulation-electroflotation reactor. Environmental Science and Pollution Research, 2016, 23, 9700-9711.	2.7	12
211	Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 44-51.	0.9	12
212	Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water. Journal of Environmental Management, 2018, 222, 135-140.	3.8	12
213	Disinfection of urines using an electro-ozonizer. Electrochimica Acta, 2021, 382, 138343.	2.6	12
214	Treatment of door-manufacturing factories wastewaters using CDEO and other AOPsA comparison. Journal of Hazardous Materials, 2009, 168, 358-363.	6.5	11
215	Integrating ZVI-dehalogenation into an electrolytic soil-washing cell. Separation and Purification Technology, 2019, 211, 28-34.	3.9	11
216	How to avoid the formation of hazardous chlorates and perchlorates during electro-disinfection with diamond anodes?. Journal of Environmental Management, 2020, 265, 110566.	3.8	11

#	Article	IF	CITATIONS
217	Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. Chemosphere, 2021, 284, 131303.	4.2	10
218	Anodic oxidation for the remediation of soils polluted with perchloroethylene. Journal of Chemical Technology and Biotechnology, 2019, 94, 288-294.	1.6	9
219	Electrolysis with diamond anodes of the effluents of a combined soil washing – ZVI dechlorination process. Journal of Hazardous Materials, 2019, 369, 577-583.	6.5	9
220	Electrochemical production of perchlorate as an alternative for the valorization of brines. Chemosphere, 2019, 220, 637-643.	4.2	9
221	Competitive Anodic Oxidation of Methyl Paraben and Propylene Glycol: Keys to Understand the Process. ChemElectroChem, 2019, 6, 771-778.	1.7	9
222	Improving photolytic treatments with electrochemical technology. Separation and Purification Technology, 2020, 235, 116229.	3.9	9
223	On the Degradation of 17-β Estradiol Using Boron Doped Diamond Electrodes. Processes, 2020, 8, 710.	1.3	9
224	Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis. Science of the Total Environment, 2020, 713, 136647.	3.9	9
225	High levofloxacin removal in the treatment of synthetic human urine using Ti/MMO/ZnO photo-electrocatalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107317.	3.3	9
226	Enhancing soil vapor extraction with EKSF for the removal of HCHs. Chemosphere, 2022, 296, 134052.	4.2	9
227	Indirect Electrochemical Oxidation by Using Ozone, Hydrogen Peroxide, and Ferrate. , 2018, , 165-192.		8
228	Electrochemical dewatering for the removal of hazardous species from sludge. Journal of Environmental Management, 2019, 233, 768-773.	3.8	8
229	Biodegradability improvement of clopyralid wastes through electrolysis using different diamond anodes. Environmental Research, 2020, 188, 109747.	3.7	8
230	Improving the degradation of low concentration of microcystin-LR with PEM electrolyzers and photo-electrolyzers. Separation and Purification Technology, 2021, 259, 118189.	3.9	8
231	Exploring the pressurized heterogeneous electro-Fenton process and modelling the system. Chemical Engineering Journal, 2022, 431, 133280.	6.6	8
232	Toward real applicability of electro-ozonizers: Paying attention to the gas phase using actual commercial PEM electrolyzers technology. Chemosphere, 2022, 289, 133141.	4.2	8
233	Scale-up in PEM electro-ozonizers for the degradation of organics. Separation and Purification Technology, 2022, 284, 120261.	3.9	8
234	Electrochemical Production of Hydrogen Peroxide in Perchloric Acid Supporting Electrolytes for the Synthesis of Chlorine Dioxide. Industrial & Engineering Chemistry Research, 2022, 61, 3263-3271.	1.8	8

#	Article	IF	CITATIONS
235	Production of Chlorine Dioxide Using Hydrogen Peroxide and Chlorates. Catalysts, 2021, 11, 1478.	1.6	8
236	Development of a novel electrochemical coagulant dosing unit for water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 216-221.	1.6	7
237	Influence of pressure and cell design on the production of ozone and organic degradation. Separation and Purification Technology, 2022, 297, 121529.	3.9	7
238	Improving the Efficiencies of Batch Coagulation Processes with Small Modifications in the pH. Separation Science and Technology, 2010, 45, 1411-1417.	1.3	6
239	Reactor design as a critical input in the electrochemical production of peroxoacetic acid. Journal of Chemical Technology and Biotechnology, 2019, 94, 2955-2960.	1.6	6
240	Promoting the formation of Co (III) electrocatalyst with diamond anodes. Journal of Electroanalytical Chemistry, 2021, 882, 115007.	1.9	6
241	Comparison of the performance of packed column and jet electro-scrubbers for the removal of toluene. Journal of Environmental Chemical Engineering, 2021, 9, 106114.	3.3	6
242	Is ozone production able to explain the good performance of CabECO® technology in wastewater treatment?. Electrochimica Acta, 2021, 396, 139262.	2.6	6
243	Towards the production of chlorine dioxide from electrochemically <scp><i>inâ€situ</i></scp> produced solutions of chlorate. Journal of Chemical Technology and Biotechnology, 2022, 97, 2024-2031.	1.6	6
244	Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes. Open Chemistry, 2013, 11, 1213-1224.	1.0	5
245	Are electrochemical fences effective in the retention of pollution?. Separation and Purification Technology, 2018, 201, 19-24.	3.9	5
246	Treatment of toluene gaseous streams using packed column electro-scrubbers and cobalt mediators. Journal of Electroanalytical Chemistry, 2021, 895, 115500.	1.9	5
247	Electroscrubbers for removing volatile organic compounds and odorous substances from polluted gaseous streams. Current Opinion in Electrochemistry, 2021, 28, 100718.	2.5	4
248	Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene. Chemosphere, 2021, 279, 130525.	4.2	4
249	Full and Sustainable Electrochemical Production of Chlorine Dioxide. Catalysts, 2022, 12, 315.	1.6	4
250	The integration of ZVI-dehalogenation and electrochemical oxidation for the treatment of complex effluents polluted with iodinated compounds. Journal of Environmental Chemical Engineering, 2022, 10, 107587.	3.3	4
251	Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. Catalysts, 2022, 12, 602.	1.6	4
252	Electrochemically Assisted Soil Washing for the Remediation of Non-polar and Volatile Pollutants. Current Pollution Reports, 2021, 7, 180-193.	3.1	3

Cristina SÃiez

#	Article	IF	CITATIONS
253	Continuous electro-scrubbers for the removal of perchloroethylene: Keys for selection. Journal of Electroanalytical Chemistry, 2021, 892, 115267.	1.9	3
254	Scale-up of Ru-based mesh anodes for the degradation of synthetic hospital wastewater. Separation and Purification Technology, 2022, 285, 120260.	3.9	3
255	Prescale-Up of Electro-Bioremediation Processes. , 2016, , .		2
256	Electrochemical removal of pharmaceutical micropollutants from groundwater. Journal of Electroanalytical Chemistry, 2022, 910, 116173.	1.9	2
257	Treatment of actual metalworking wastewaters by coagulation combined with electrochemical oxidation. International Journal of Environmental Engineering, 2009, 1, 238.	0.1	1
258	Electrokinetic Remediation of Soils Polluted with Pesticides: Flushing and Fence Technologies. , 2016, , .		1
259	New electrochemical processes for the environmental sustainability. Chemosphere, 2020, 257, 127188.	4.2	1
260	Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. Chemosphere, 2022, 287, 132334.	4.2	1
261	On the way to raising the technology readiness level of diamond electrolysis. Current Opinion in Electrochemistry, 2022, 33, 100928.	2.5	1
262	Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants. , 2010, , 99-124.		0