
Krzysztof Lukaszkowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications. Materials, 2021, 14, 3743.	2.9	16
2	The Influence of Magnetron Sputtering Process Temperature on ZnO Thin-Film Properties. Coatings, 2021, 11, 1507.	2.6	8
3	Structure and Tribological Properties of AlCrN + CrCN Coating. Coatings, 2020, 10, 1084.	2.6	4
4	Welding of mobile platform elements made from mixed grades of high-strength steels. Scientific Journal of Silesian University of Technology Series Transport, 2020, 107, 197-203.	0.4	0
5	Structure and tribological properties of DLC:Si/AlCrN low friction thin film. MATEC Web of Conferences, 2019, 252, 08002.	0.2	3
6	Characteristics of CrAlSiN+MoS2 coating deposited by cathodic arc and magnetron sputtering process. Vacuum, 2019, 163, 360-367.	3.5	9
7	Various Applications of Multifunctional Thin Films with Specific Properties Deposited by the ALD Method. Solid State Phenomena, 2019, 293, 111-123.	0.3	1
8	LOW ALLOY STEEL SHAFT SURFACE REGENERATIVE WELDING WITH MICRO-JET COOLING. Scientific Journal of Silesian University of Technology Series Transport, 2019, 102, 205-215.	0.4	0
9	Graphene-based layers deposited onto flexible substrates: Used in dye-sensitized solar cells as counter electrodes. Applied Surface Science, 2017, 424, 157-163.	6.1	20
10	Carbon Nanomaterials Application as a Counter Electrode for Dye-Sensitized Solar Cells. Archives of Metallurgy and Materials, 2017, 62, 27-32.	0.6	9
11	Structure and tribological properties of MoS ₂ low friction thin films. ITM Web of Conferences, 2017, 15, 06008.	0.5	3
12	A carbon-nanotubes counter electrode for flexible dye-sensitized solar cells. Materiali in Tehnologije, 2017, 51, 623-629.	0.5	6
13	Structure and Properties of Diamond-Like Carbon Films Deposited by PACVD Technique on Light Alloys. Archives of Metallurgy and Materials, 2016, 61, 1321-1330.	0.6	1
14	Characterisation of graphene-based layers for dye-sensitised solar cells application. Surface Engineering, 2016, 32, 816-822.	2.2	6
15	Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application. Archives of Metallurgy and Materials, 2016, 61, 803-806.	0.6	14
16	Nanocrystalline TiO2 Powder Prepared by Sol-Gel Method for Dye-Sensitized Solar Cells. Archives of Metallurgy and Materials, 2016, 61, 833-836.	0.6	8
17	Nano-Scale Structure Investigation of Vapour Deposited AlCrSiN Coating Using Transmission Electron Microscope Techniques. Archives of Metallurgy and Materials, 2016, 61, 837-842.	0.6	2
18	Structure and properties of Al2O3 thin films deposited by ALD process. Vacuum, 2016, 131, 319-326.	3.5	50

#	Article	IF	CITATIONS
19	Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties. Archives of Metallurgy and Materials, 2016, 61, 741-746.	0.6	6
20	Characteristics of the AlTiCrN+DLC coating deposited with a cathodic arc and the PACVD process. Materiali in Tehnologije, 2016, 50, 175-181.	0.5	5
21	Characteristics of dye-sensitized solar cells with carbon nanomaterials. Materiali in Tehnologije, 2016, 50, 649-654.	0.5	6
22	Physical Vapor Deposition in Manufacturing. , 2015, , 2719-2754.		5
23	Influence of the HPDL Surface Treatment of the X40CrMoV5-1 Tool Steel on Wear Resistance. Advanced Materials Research, 2014, 1036, 428-433.	0.3	Ο
24	Characterisation and properties of hybrid coatings deposited onto magnesium alloys. Surface Engineering, 2014, 30, 927-932.	2.2	18
25	Characteristics of CrAlSiN+DLC coating deposited by lateral rotating cathode arc PVD and PACVD process. Applied Surface Science, 2014, 312, 126-133.	6.1	20
26	Microstructure of CrAlSiN+DLC Coating Deposited onto Hot Work Tool Steel. Solid State Phenomena, 2013, 203-204, 228-231.	0.3	0
27	Physical Vapor Deposition in Manufacturing. , 2013, , 1-31.		4
28	Structure and properties of PVD coatings deposited on aluminium alloys. Surface Engineering, 2012, 28, 598-604.	2.2	29
29	Microstructure and Mechanical Properties of PVD Nanoncrystalline Layers. Solid State Phenomena, 2012, 186, 230-233.	0.3	1
30	Microstructure and tribological properties of PVD coatings deposited on the X40CrMoV5-1 steel substrate. International Journal of Surface Science and Engineering, 2012, 6, 296.	0.4	3
31	Characterization and properties of PVD coatings applied to extrusion dies. Vacuum, 2012, 86, 2082-2088.	3.5	20
32	Structure and mechanical properties of PVD coatings deposited onto the X40CrMoV5-1 hot work tool steel substrate. Vacuum, 2012, 86, 1186-1194.	3.5	20
33	Microstructure, Mechanical Properties and Corrosion Resistance of Nanocomposite Coatings Deposited by PVD Technology. , 2011, , .		1
34	Structure, mechanical properties and corrosion resistance of PVD gradient coatings deposited onto the X40CrMoV5-1 hot work tool steel substrate. International Journal of Materials and Product Technology, 2010, 39, 148.	0.2	3
35	Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates. Journal of Materials Science, 2010, 45, 1629-1637.	3.7	24
36	Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate. Journal of Materials Science, 2008, 43, 3400-3407.	3.7	24

#	Article	IF	CITATIONS
37	Comparison of Structure and Properties of the PVD, Hybrid (Galvanic + PVD), and Galvanic Coatings Deposited onto the Brass Substrate. Materials Science Forum, 2008, 591-593, 860-864.	0.3	2
38	Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate. Journal of Materials Processing Technology, 2005, 164-165, 816-821.	6.3	54
39	Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate. Journal of Materials Processing Technology, 2004, 157-158, 317-323.	6.3	31
40	Structure, chemical and phase compositions of coatings deposited by reactive magnetron sputtering onto the brass substrate. Journal of Materials Processing Technology, 2004, 157-158, 380-387.	6.3	17
41	Properties of the multi-layer Ti/CrN and Ti/TiAlN coatings deposited with the PVD technique onto the brass substrate. Journal of Materials Processing Technology, 2003, 143-144, 832-837.	6.3	17
42	Properties of PVD Coatings on a Brass Substrate. Materials Science Forum, 2003, 437-438, 199-202.	0.3	0
43	Review of Nanocomposite Thin Films and Coatings Deposited by PVD and CVD Technology. , 0, , .		15
44	Structure and Properties of Diamond-Like Carbon Coatings Deposited on Non-Ferrous Alloys Substrate. Solid State Phenomena, 0, 199, 170-175.	0.3	9
45	Characteristics of Hybrid Coating Deposited by PVD and PACVD Process. Advanced Materials Research, 0, 1036, 225-229.	0.3	1
46	Assessment of Tribological Properties of Low Friction Thin Layers Produced by Vacuum Methods. Solid State Phenomena, 0, 293, 125-140.	0.3	0
47	Comparison of the Structure of AlCrSiN Coating Produced by Planar and Rotating Arc Technology.	0.3	1