Muhammad Babar Shahzad Afzal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research, 2015, 22, 4907-4921.	2.7	459
2	Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 2013, 90, 1317-1332.	4.2	328
3	Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 2014, 117, 232-242.	4.2	308
4	Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 2018, 132, 23-34.	1.4	210
5	Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Research, 2014, 58, 152-159.	5.3	168
6	Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. Journal of Hazardous Materials, 2011, 186, 1568-1575.	6.5	165
7	Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environmental Pollution, 2011, 159, 2675-2683.	3.7	164
8	Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research, 2017, 24, 4322-4336.	2.7	164
9	The Inoculation Method Affects Colonization and Performance of Bacterial Inoculant Strains in the Phytoremediation of Soil Contaminated with Diesel Oil. International Journal of Phytoremediation, 2012, 14, 35-47.	1.7	156
10	Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, 2018, 349, 242-251.	6.5	153
11	The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biology and Fertility of Soils, 2014, 50, 249-262.	2.3	133
12	Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecological Engineering, 2015, 84, 58-66.	1.6	122
13	Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science, 2014, 5, 755.	1.7	114
14	Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nature Sustainability, 2019, 2, 863-871.	11.5	113
15	On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 2019, 217, 541-548.	4.6	109
16	Fenugreek a multipurpose crop: Potentialities and improvements. Saudi Journal of Biological Sciences, 2016, 23, 300-310.	1.8	104
17	Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant and Soil, 2016, 405, 179-195.	1.8	102
18	Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with <i>Leptochloa fusca</i> . International Journal of Phytoremediation, 2018, 20, 121-128.	1.7	94

#	Article	IF	CITATIONS
19	Large-scale remediation of oil-contaminated water using floating treatment wetlands. Npj Clean Water, 2019, 2, .	3.1	91
20	Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, <i>Phenacoccus solenopsis</i> (Homoptera: Pseudococcidae), in Pakistan. Pest Management Science, 2015, 71, 151-158.	1.7	90
21	Bacterial Rhizosphere and Endosphere Populations Associated with Grasses and Trees to be Used for Phytoremediation of Crude Oil Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 314-320.	1.3	89
22	Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. Journal of Hazardous Materials, 2012, 237-238, 110-115.	6.5	87
23	Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. Advances in Agronomy, 2013, , 381-445.	2.4	86
24	Floating Wetlands: A Sustainable Tool for Wastewater Treatment. Clean - Soil, Air, Water, 2018, 46, 1800120.	0.7	85
25	Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Science of the Total Environment, 2018, 645, 966-973.	3.9	84
26	Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. International Biodeterioration and Biodegradation, 2013, 85, 331-336.	1.9	80
27	Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. International Biodeterioration and Biodegradation, 2016, 115, 192-198.	1.9	79
28	Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability, 2020, 12, 5559.	1.6	75
29	Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil. PLoS ONE, 2014, 9, e111208.	1.1	75
30	Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. Journal of Environmental Management, 2018, 224, 387-395.	3.8	71
31	Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis. Water Science and Technology, 2016, 74, 2192-2201.	1.2	70
32	Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environmental Science and Pollution Research, 2016, 23, 6188-6196.	2.7	70
33	Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. International Journal of Phytoremediation, 2018, 20, 675-681.	1.7	70
34	Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environmental Science and Pollution Research, 2019, 26, 21109-21126.	2.7	68
35	Combined use of Alkane-Degrading and Plant Growth-Promoting Bacteria Enhanced Phytoremediation of Diesel Contaminated soil. International Journal of Phytoremediation, 2014, 16, 1268-1277.	1.7	67
36	Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere, 2019, 217, 576-583.	4.2	66

#	Article	IF	CITATIONS
37	Assessment of Heavy Metal Contamination in Soil and Groundwater at Leather Industrial Area of Kasur, Pakistan. Clean - Soil, Air, Water, 2014, 42, 1133-1139.	0.7	62
38	Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere, 2020, 240, 124890.	4.2	62
39	A novel survey of the ethno medicinal knowledge of dental problems in Manoor Valley (Northern) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.0	r /Overlock
40	Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere, 2020, 243, 125353.	4.2	60
41	Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil. Chemosphere, 2013, 91, 663-668.	4.2	53
42	Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosystems, 2016, 150, 1261-1270.	0.8	53
43	Plant-endophyte synergism in constructed wetlands enhances the remediation of tannery effluent. Water Science and Technology, 2018, 77, 1262-1270.	1.2	53
44	Biodegradation of kerosene in soil by a mixed bacterial culture under different nutrient conditions. International Biodeterioration and Biodegradation, 2008, 61, 161-166.	1.9	52
45	Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi Journal of Biological Sciences, 2019, 26, 1179-1186.	1.8	52
46	Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. Journal of Hazardous Materials, 2022, 422, 126926.	6.5	52
47	Resistance in the mealybugÂPhenacoccus solenopsis TinsleyÂ(Homoptera: Pseudococcidae) in Pakistan to selected organophosphate and pyrethroid insecticides. Crop Protection, 2014, 66, 29-33.	1.0	49
48	Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. International Journal of Phytoremediation, 2017, 19, 937-946.	1.7	49
49	Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environmental Science and Pollution Research, 2016, 23, 18320-18331.	2.7	48
50	Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. International Journal of Phytoremediation, 2018, 20, 692-698.	1.7	47
51	Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale. Science of the Total Environment, 2019, 685, 370-379.	3.9	47
52	Potentialities of floating wetlands for the treatment of polluted water of river Ravi, Pakistan. Ecological Engineering, 2019, 133, 167-176.	1.6	46
53	Enhanced removal of reactive navy blue dye using powdered orange waste. Ecological Engineering, 2013, 58, 399-405.	1.6	45
54	Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pesticide Biochemistry and Physiology, 2014, 114, 38-43.	1.6	45

#	Article	IF	CITATIONS
55	Paper and board mill effluent treatment with the combined biological–coagulation–filtration pilot scale reactor. Bioresource Technology, 2008, 99, 7383-7387.	4.8	38
56	Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability, 2020, 12, 5801.	1.6	38
57	Physiological and biochemical responses of two spring wheat genotypes to non-hydraulic root-to-shoot signalling of partial and full root-zone drought stress. Plant Physiology and Biochemistry, 2019, 139, 11-20.	2.8	37
58	Endophytic <i>Burkholderia</i> sp. strain Ps <scp>JN</scp> Improves Plant Growth and Phytoremediation of Soil Irrigated with Textile Effluent. Clean - Soil, Air, Water, 2014, 42, 1304-1310.	0.7	36
59	Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Saudi Journal of Biological Sciences, 2015, 22, 317-321.	1.8	36
60	Remediation of polluted river water by floating treatment wetlands. Water Science and Technology: Water Supply, 2019, 19, 967-977.	1.0	35
61	Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water and Environment Journal, 2019, 33, 124-134.	1.0	35
62	Floating treatment wetlands as biological buoyant filters for wastewater reclamation. International Journal of Phytoremediation, 2019, 21, 1273-1289.	1.7	32
63	Enhanced remediation of chlorpyrifos by ryegrass (<i>Lolium multiflorum</i>) and a chlorpyrifos degrading bacterial endophyte <i>Mezorhizobium</i> sp. HN3. International Journal of Phytoremediation, 2016, 18, 126-133.	1.7	31
64	Improving vanadium stress tolerance of watermelon by grafting onto bottle gourd and pumpkin rootstock. Plant Growth Regulation, 2018, 85, 41-56.	1.8	31
65	Genetics and preliminary mechanism of chlorpyrifos resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae). Pesticide Biochemistry and Physiology, 2015, 119, 42-47.	1.6	30
66	Heavy metal exposure through artificial diet reduces growth and survival of Spodoptera litura (Lepidoptera: Noctuidae). Environmental Science and Pollution Research, 2019, 26, 14426-14434.	2.7	30
67	Laboratory induced bifenthrin resistance selection in Oxycarenus hyalinipennis (Costa) (Hemiptera:) Tj ETQq1 1 2020, 132, 105107.	0.784314 1.0	rgBT /Overloo 30
68	Genome-Wide Analysis of Potassium Transport-Related Genes in Chickpea (Cicer arietinum L.) and Their Role in Abiotic Stress Responses. Plant Molecular Biology Reporter, 2018, 36, 451-468.	1.0	29
69	Bacterial Augmented Floating Treatment Wetlands for Efficient Treatment of Synthetic Textile Dye Wastewater. Sustainability, 2020, 12, 3731.	1.6	29
70	Resistance of green lacewing, Chrysoperla carnea Stephens to nitenpyram: Cross-resistance patterns, mechanism, stability, and realized heritability. Pesticide Biochemistry and Physiology, 2017, 135, 59-63.	1.6	28
71	Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen. BMC Genomics, 2018, 19, 456.	1.2	27
72	Bioremediation of tannery effluent by Cr- and salt-tolerant bacterial strains. Environmental Monitoring and Assessment, 2018, 190, 716.	1.3	25

#	Article	IF	CITATIONS
73	Insecticide toxic effects and blood biochemical alterations in occupationally exposed individuals in Punjab, Pakistan. Science of the Total Environment, 2019, 655, 102-111.	3.9	24
74	Laboratory selection of chlorpyrifos resistance in an Invasive Pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): Cross-resistance, stability and fitness cost. Pesticide Biochemistry and Physiology, 2017, 137, 8-14.	1.6	23
75	Unveiling the Potential of Novel Macrophytes for the Treatment of Tannery Effluent in Vertical Flow Pilot Constructed Wetlands. Water (Switzerland), 2020, 12, 549.	1.2	22
76	Evaluating bioenergy potential of the Para grass (Brachiaria mutica) biomass produced on a land-free cultivation system while keeping the water-energy-environment nexus sustainable. Energy Conversion and Management, 2021, 245, 114590.	4.4	22
77	Plant-bacteria synergism: An innovative approach for the remediation of crude oil-contaminated soils. Soil and Environment, 2017, 36, 93-113.	1.1	22
78	Inheritance, realized heritability and biochemical mechanism of acetamiprid resistance in the cotton mealybug, Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae). Pesticide Biochemistry and Physiology, 2015, 122, 44-49.	1.6	21
79	Occurrence and seasonal variation of human Plasmodium infection in Punjab Province, Pakistan. BMC Infectious Diseases, 2019, 19, 935.	1.3	21
80	Two-Spotted Ladybeetle Adalia bipunctata L. (Coleoptera: Coccinellidae): A Commercially Available Predator to Control Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS ONE, 2016, 11, e0162843.	1.1	20
81	Characterization of Hydrocarbon-Degrading Bacteria in Constructed Wetland Microcosms Used to Treat Crude Oil Polluted Water. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 358-364.	1.3	20
82	Effects of Inoculum Density on Plant Growth and Hydrocarbon Degradation. Pedosphere, 2016, 26, 774-778.	2.1	19
83	Suppressing photorespiration for the improvement in photosynthesis and crop yields: A review on the role of S-allantoin as a nitrogen source. Journal of Environmental Management, 2019, 237, 644-651.	3.8	19
84	Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: bacterial augmentation enhances system's performance. International Journal of Environmental Science and Technology, 2019, 16, 4611-4620.	1.8	19
85	Field evaluation of selected botanicals and commercial synthetic insecticides against Thrips tabaci Lindeman (Thysanoptera: Thripidae) populations and predators in onion field plots. Crop Protection, 2014, 62, 10-15.	1.0	18
86	Resistance risk assessment to chlorpyrifos and cross-resistance to other insecticides in a field strain of Phenacoccus solenopsis Tinsley. Crop Protection, 2017, 94, 38-43.	1.0	18
87	Status of insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) from 1997 to 2019: cross-resistance, genetics, biological costs, underlying mechanisms, and implications for management. Phytoparasitica, 2022, 50, 465-485.	0.6	18
88	Deltamethrin resistance in the cotton mealybug, Phenacoccus solenopsis Tinsley: Cross-resistance to other insecticides, fitness cost analysis and realized heritability. Phytoparasitica, 2016, 44, 83-90.	0.6	17
89	Variations in the Composition, Antibacterial and Haemolytic Activities of Peel Essential Oils from Unripe and Ripened <i>Citrus limon</i> (L.) Osbeck Fruit. Journal of Essential Oil-bearing Plants: JEOP, 2019, 22, 159-168.	0.7	17
90	Selection of bifenthrin resistance in cotton mealybug Phenacoccus solenopsis Tinsley (Homoptera:) Tj ETQq0 0 0	rgBT /Ove 1.0	rlock 10 Tf 5

Protection, 2016, 87, 55-59.

6

#	Article	IF	CITATIONS
91	Resistance risk analysis to acetamiprid and other insecticides in Acetamiprid-Selected population of Phenacoccus solenopsis. Phytoparasitica, 2016, 44, 177-186.	0.6	16
92	Organic Micropollutants in the Environment: Ecotoxicity Potential and Methods for Remediation. , 2017, , 65-99.		16
93	Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil. Environmental Science and Pollution Research, 2018, 25, 7021-7032.	2.7	16
94	First report of thiamethoxam resistance selection, cross resistance to various insecticides and realized heritability in Asian citrus psyllid Diaphorina citri from Pakistan. Crop Protection, 2019, 121, 11-17.	1.0	16
95	Simultaneous selection for stem borer resistance and forage related traits in maize (Zea mays ssp.) Tj ETQq1 1 0.	784314 rg 1.0	gBT_/Overla <mark>c</mark> t
96	Cyperus laevigatus L. Enhances Diesel Oil Remediation in Synergism with Bacterial Inoculation in Floating Treatment Wetlands. Sustainability, 2020, 12, 2353.	1.6	15
97	Assessing Heavy Metal Contamination in Oil and Gas Well Drilling Waste and Soil in Pakistan. Polish Journal of Environmental Studies, 2018, 28, 785-793.	0.6	15
98	Characterization of indoxacarb resistance in Phenacoccus solenopsis Tinsley (Homoptera:) Tj ETQq0 0 0 rgBT /Ov 18, 779-785.	verlock 10 0.4	Tf 50 467 Td 14
99	Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. World Journal of Microbiology and Biotechnology, 2019, 35, 188.	1.7	14
100	Phytochemical Spectrum of Essential Oil of Paganum harmala by GC-MS and Antimicrobial Activity Using Sequential Solvents Fractions and Essential Oil. Asian Journal of Chemistry, 2014, 26, 574-578.	0.1	13
101	Botanicals, selective insecticides, and predators to control <i>Diaphorina citri</i> (Hemiptera:) Tj ETQq1 1 0.784	314 rgBT / 1.5	Oygrlock 10
102	Genetics, realized heritability and preliminary mechanism of spinosad resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): an invasive pest from Pakistan. Genetica, 2015, 143, 741-749.	0.5	13
103	Seasonal abundance of greater wax moths (<i>Galleria mellonella</i> L.) in hives of western honey bees (<i>Apis mellifera</i> L.) correlates with minimum and maximum ambient temperature. Journal of Apicultural Research, 2017, 56, 416-420.	0.7	13
104	Genetic analysis, realized heritability and synergistic suppression of indoxacarb resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae). Crop Protection, 2016, 84, 62-68.	1.0	12
105	Selection, cross-resistance, and resistance risk assessment to deltamethrin in laboratory selected Phenacoccus solenopsis (Homoptera: Pseudococcidae). Crop Protection, 2018, 112, 67-73.	1.0	12
106	Determination of insecticide residues and their adverse effects on blood profile of occupationally exposed individuals. Ecotoxicology and Environmental Safety, 2018, 163, 382-390.	2.9	12
107	Enhanced remediation of tannery effluent in constructed wetlands augmented with endophytic bacteria. , 0, 102, 93-100.		12
108	EndophyticCephalotheca sulfureaAGH07 reprograms soybean to higher growth. Journal of Plant Interactions, 2012, 7, 301-306.	1.0	11

#	Article	IF	CITATIONS
109	Antimicrobial Activity of Extract and Fractions of Different Parts and GC-MS Profiling of Essential Oil of Cichorium intybus Extracted by Super Critical Fluid Extraction. Asian Journal of Chemistry, 2014, 26, 531-536.	0.1	11
110	Graphical dataset on important medicinal plants used for curing dental issues in Manoor Valley, Mansehra, Pakistan. Data in Brief, 2016, 9, 1028-1033.	0.5	11
111	Studies on genetics, stability and possible mechanism of deltamethrin resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) from Pakistan. Journal of Genetics, 2016, 95, 1009-1016.	0.4	11
112	Effects of plant morphology on the incidence of sucking insect pests complex in few genotypes of cotton. Journal of the Saudi Society of Agricultural Sciences, 2017, 16, 344-349.	1.0	11
113	Spinosad resistance selected in the laboratory strain of Phenacoccus solenopsis Tinsley (Hemiptera:) Tj ETQq1 1 531-542.	0.784314 0.6	rgBT /Overlo 11
114	Laboratory selection, crossâ€resistance, and estimations of realized heritability of indoxacarb resistance in Phenacoccus solenopsis (Homoptera: Pseudococcidae). Pest Management Science, 2020, 76, 161-168.	1.7	11
115	Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere, 2022, 290, 133327.	4.2	11
116	Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Scientific Reports, 2022, 12, 4566.	1.6	11
117	Elucidating the Potential of Vertical Flow-Constructed Wetlands Vegetated with Different Wetland Plant Species for the Remediation of Chromium-Contaminated Water. Sustainability, 2022, 14, 5230.	1.6	11
118	Evaluation of Toxicity on Ctenopharyngodon idella Due to Tannery Effluent Remediated by Constructed Wetland Technology. Processes, 2020, 8, 612.	1.3	10
119	Plant-Microbe Synergism in Floating Treatment Wetlands for the Enhanced Removal of Sodium Dodecyl Sulphate from Water. Sustainability, 2021, 13, 2883.	1.6	10
120	Effect of botanicals and synthetic insecticides on Pieris brassicae (L., 1758) (Lepidoptera: Pieridae). Turkiye Entomoloji Dergisi, 0, , 275-284.	0.1	10
121	Host Plant Selection Affects Biological Parameters in Armyworm, Spodoptera litura (Lepidoptera:) Tj ETQq1 1 0.7	784314 rg 0.1	BT /Overlock
122	Floating Treatment Wetlands (FTWs) is an Innovative Approach for the Remediation of Petroleum Hydrocarbons-Contaminated Water. Journal of Plant Growth Regulation, 2023, 42, 1402-1420.	2.8	10
123	Ecology and Functional Potential of Endophytes in Bioremediation: A Molecular Perspective. , 2014, , 301-320.		9
124	Prevalence and distribution of human Plasmodium infection in Federally Administrative Tribal Areas of Pakistan. Acta Parasitologica, 2016, 61, 537-43.	0.4	9
125	Algae Biotechnology. , 2017, , 301-334.		9
126	Bioaugmentation-Enhanced Remediation of Crude Oil Polluted Water in Pilot-Scale Floating Treatment Wetlands. Water (Switzerland), 2021, 13, 2882.	1.2	9

#	Article	IF	CITATIONS
127	Spinosad resistance in an invasive cotton mealybug, Phenacoccus solenopsis : Cross-resistance, stability and relative fitness. Journal of Asia-Pacific Entomology, 2017, 20, 457-462.	0.4	8
128	Current status and future possibilities of molecular genetics techniques in Brassica napus. Biotechnology Letters, 2018, 40, 479-492.	1.1	8
129	Fipronil resistance in pink stem borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae) from Pakistan: Cross-resistance, genetics and realized heritability. Crop Protection, 2019, 120, 103-108.	1.0	8
130	Enhanced degradation of hydrocarbons by gamma ray induced mutant strain of Pseudomonas putida. Biotechnology Letters, 2019, 41, 391-399.	1.1	8
131	The efficacy of crude aqueous extracts of some plants as grain protectants against the stored grain mite, Rhizoglyphus tritici. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2013, 37, 585-594.	0.8	7
132	Biodiversity and Species Distribution of Coccinellids (Coccinellidae: Coleoptera) in District Sargodha (Punjab), Pakistan. Pakistan Journal of Zoology, 2017, 49, .	0.1	7
133	In-vitro Toxicity Evaluation of some Phytoextracts against Mealybug Drosicha mangiferae (Hemiptera:) Tj ETQq1 🕻	1 0.78431 0.1	4 <u>r</u> gBT /Ονe
134	Reuse of wastewater for irrigating tomato plants (Lycopersicon esculentum L.) through silicon supplementation. Journal of Water Reuse and Desalination, 2013, 3, 128-139.	1.2	6
135	Feeding preferences ofOdontotermes obesus(Rambur) (Isoptera: Termitidae) on different commercial and non-commercial woods from Lahore, Pakistan, under laboratory and field conditions. Zoology and Ecology, 2014, 24, 369-379.	0.2	6
136	Effects of different host species on the life history of Bracon hebetor. Animal Biology, 2016, 66, 403-414.	0.6	6
137	Incidence of <i>Spodoptera litura</i> (Lepidoptera: Noctuidae) and Its Feeding Potential on Various Citrus (Sapindales: Rutaceae) Cultivars in the Sargodha Region of Pakistan. Florida Entomologist, 2016, 99, 192-195.	0.2	6
138	Sublethal Effect of Six Insecticides on Predatory Activity and Survival of Coccinella Septempunctata (Coleoptera: Coccinellidae) Following Contact with Contaminated Prey and Residues. Gesunde Pflanzen, 2020, 72, 77-86.	1.7	6
139	Enhanced remediation of Cr ⁶⁺ in bacterialâ€assisted floating wetlands. Water and Environment Journal, 2020, 34, 970-978.	1.0	6
140	Physiological Effects of Citrus Leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) Larval Feeding on Photosynthetic and Gaseous Exchange Rates in Citrus. Journal of Economic Entomology, 2018, 111, 2264-2271.	0.8	5
141	Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in dieselâ€contaminated soil. Physiologia Plantarum, 2021, 173, 58-66.	2.6	5
142	Resistance of Commercial and Non-commercial Woods against Heterotermes indicola Wasmann (Blattodea: Rhinotermitidae) in Laboratory and Field Conditions. Pakistan Journal of Zoology, 2017, 49, 785-792.	0.1	5
143	Presence of less-preferred hosts of the aphid parasitoids Aphidius ervi and Praon volucre reduces parasitism efficiency. Phytoparasitica, 2018, 46, 89-96.	0.6	4
144	Investigating degradation metabolites and underlying pathway of azo dye "Reactive Black 5―in bioaugmented floating treatment wetlands. Environmental Science and Pollution Research, 2021, 28, 65229-65242.	2.7	4

#	Article	IF	CITATIONS
145	Field Efficacy of Selected Synthetic and Botanical Insecticides against Lepidopterous Borers, Earias vittella and Helicoverpa armigera (Lepidoptera: Noctuidae), on Okra (Abelmoschus esculentus (L.)) Tj ETQq1	1 0.78 4.3 14 r	gB ¼ /Overloc
146	Effect of Intra-Guild Predation and Sub Lethal Concentrations of Insecticides on the Predation of Coccinellids. Pakistan Journal of Zoology, 2019, 51, .	0.1	4
147	Evaluation of different insecticides for the management of onion thrips (Thrips tabaci Lindeman, 1889) (Thysanoptera, Thripidae) on onion (Allium cepa L.) crops. Polish Journal of Entomology, 2018, 87, 165-176.	0.1	4
148	Subfamily Coleoscirinae (Acari: Trombidiformes: Cunaxidae), with Description of One New Species from Pakistan. Journal of Insect Science, 2014, 14, 1-14.	0.6	3
149	Effectiveness and benefit cost ratio of selected insecticides at different applicationon intervals for brinjal shoot and fruit borer, Leucinodes orbonalis (C.) management on brinjal, Solanum melongena (L.) at Sahiwal, Pakistan. Phytoparasitica, 2016, 44, 423-427.	0.6	3
150	Association of citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) damage with physiological parameters and larval weight in Citrus reticulata. International Journal of Tropical Insect Science, 2018, 38, 26-32.	0.4	3
151	Fipronil enhanced natural occurrence of Fusarium solani (Hypocreales: Nectriaceae) on building infesting termite Heterotermes indicola Wasmann (Blattodea: Rhinotermitidae). Journal of Asia-Pacific Entomology, 2018, 21, 493-500.	0.4	2
152	Efficacy of Nuclear Polyhedrosis Virus and Flubendiamide Alone and in Combination against Spodoptera litura F Pakistan Journal of Zoology, 2017, 49, .	0.1	2
153	Differential Impact of Different Land-Use Types on the Population Density and Community Assemblages of Edaphic Macroinvertebrates in District Sargodha, Punjab, Pakistan. Pakistan Journal of Zoology, 2018, 50, .	0.1	2
154	Constructed and Floating Wetlands for Sustainable Water Reclamation. Sustainability, 2022, 14, 1268.	1.6	2
155	Enhanced degradation of hydrocarbons in constructed wetlands aided with nutrients, surfactant, and aeration. International Journal of Phytoremediation, 2022, 24, 1163-1172.	1.7	2
156	Effect of Amendments on Bioavailability of Heavy Metals to Alfalfa and Biomass Yield Irrigated with Wastewater. Journal of Environmental Engineering, ASCE, 2016, 142, 04016038.	0.7	1
157	Olfactory Response of Ladybird Beetle, Coccinella septempunctata L. (Coccinellidae: Coleoptera) towards Aphids and their Host Plants. Pakistan Journal of Zoology, 2017, 49, 1539-1541.	0.1	1
158	Bio-Efficacy of New Insecticides Against Whitefly, Bemisia tabaci (Genn.) on Cotton, Bt-121. Pakistan Journal of Nutrition, 2014, 13, 340-343.	0.2	1
159	Evaluation of Synthetic Insecticides and Essential Oils for the Management of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Pakistan Journal of Zoology, 2019, 51, .	0.1	1
160	Soil-free cultivation of Leptochloa fusca in the urban and industrial wastewaters produced a low-lignin biomass for bioethanol production. Sustainable Energy Technologies and Assessments, 2022, 52, 102305.	1.7	1
161	First record ofAmblyseiulella paraheveae(Wu & Ou, 2002) from Pakistan. International Journal of Acarology, 2016, 42, 56-61.	0.3	0
162	Bitrophic effects of artificial diets of American bollworm (Helicoverpa armigera H.) on different biological aspects of Bracon hebetor Say. Journal of the Saudi Society of Agricultural Sciences, 2020, 19, 26-30.	1.0	0

#	Article	IF	CITATIONS
163	Biochemical resistance characterization to chlorpyrifos, acetamiprid, spinosad, and emamectin benzoate in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) from Pakistan. Phytoparasitica, 0, , 1.	0.6	0
164	Efficacy of Different Insecticides Against Mushroom Sciarid Fly (Lycoriella auripila) in Punjab, Pakistan. Pakistan Journal of Nutrition, 2013, 13, 50-55.	0.2	0
165	Relative Efficacy of Different Insecticides Against Jassid, Amrasca devastans (Dist.) on Cotton, Bt-121. Pakistan Journal of Nutrition, 2014, 13, 344-347.	0.2	0
166	Biochemical studies on the amylase of Mango Mealybug (Drosicha stebbingi Green). Turkiye Entomoloji Dergisi, 2014, 38, .	0.1	0
167	Effect of Infested Shoot Removal and Light Trap on Brinjal Shoot and Fruit Borer (Leucinodes) Tj ETQq1 1 0.78431	.4 rgBT /C 0.1	verlock 10 0
168	Seasonal Biodiversity of Braconidae (Hymenoptera) in Citrus Orchards of Sargodha, Pakistan. Sarhad Journal of Agriculture, 2019, 35, .	0.0	0
169	Effect of Neem-Based Botanicals and Abamectin 1.8% EC Against Phyllocnistis citrella1 in Citrus reticulata (Rutaceae) Nursery Plantations. Southwestern Entomologist, 2019, 44, 595.	0.1	0
170	Baseline toxicity of ten insecticides from organophosphate, pyrethroid and novel mode of action groups against Droschica mangiferae (Homoptera: Margarodidae) collected from citrus orchard in	0.4	0

2017–19. International Journal of Tropical Insect Science, 0, , 1.