Cormac

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7904542/cormac-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33	558	15	23
papers	citations	h-index	g-index
33	722	6.7 avg, IF	3.68
ext. papers	ext. citations		L-index

#	Paper Paper	IF	Citations
33	Giant gauge factor of Van der Waals material based strain sensors. <i>Nature Communications</i> , 2021 , 12, 2018	17.4	14
32	Imaging and identification of point defects in PtTe2. Npj 2D Materials and Applications, 2021, 5,	8.8	10
31	Structural and electrical characterisation of PtS from H2S-converted Pt. <i>Applied Materials Today</i> , 2021 , 25, 101163	6.6	3
30	Directing the Morphology of Chemical Vapor Deposition-Grown MoS2 on Sapphire by Crystal Plane Selection. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000073	1.6	6
29	Photoelectrical properties of graphene/doped GeSn vertical heterostructures <i>RSC Advances</i> , 2020 , 10, 20921-20927	3.7	1
28	Low-temperature synthesis and electrocatalytic application of large-area PtTe thin films. <i>Nanotechnology</i> , 2020 , 31, 375601	3.4	14
27	Electrical Contact Barriers between a Three-Dimensional Metal and Layered SnS. <i>ACS Applied Materials & Discrete Amplied & Discrete </i>	9.5	5
26	Two-Photon Absorption in Monolayer MXenes. Advanced Optical Materials, 2020, 8, 1902021	8.1	26
25	Highly Sensitive, Selective, Stable, and Flexible NO2 Sensor Based on GaSe. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901085	6.8	11
24	Sub-millimeter size high mobility single crystal MoSe monolayers synthesized by NaCl-assisted chemical vapor deposition <i>RSC Advances</i> , 2020 , 10, 1580-1587	3.7	14
23	Charge density waves and degenerate modes in exfoliated monolayer 2H-TaS. <i>IUCrJ</i> , 2020 , 7, 913-919	4.7	1
22	Insights into Multilevel Resistive Switching in Monolayer MoS. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 6022-6029	9.5	22
21	Electronic and structural characterisation of polycrystalline platinum disulfide thin films <i>RSC Advances</i> , 2020 , 10, 42001-42007	3.7	6
20	High Selectivity Gas Sensing and Charge Transfer of SnSe. ACS Sensors, 2019, 4, 2546-2552	9.2	40
19	Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	47
18	Photo-enhanced gas sensing of SnS with nanoscale defects RSC Advances, 2019, 9, 626-635	3.7	30
17	Magnetoresistance of Nanoscale Domain Walls Formed in Arrays of Parallel Nanowires. <i>Spin</i> , 2019 , 09, 1950004	1.3	

LIST OF PUBLICATIONS

16	Strategy for Fabricating Wafer-Scale Platinum Disulfide. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2019 , 11, 8202-8209	9.5	29
15	PtSe 2 grown directly on polymer foil for use as a robust piezoresistive sensor. <i>2D Materials</i> , 2019 , 6, 045029	5.9	21
14	Effects of Annealing Temperature and Ambient on Metal/PtSe Contact Alloy Formation. <i>ACS Omega</i> , 2019 , 4, 17487-17493	3.9	6
13	Surface-State Assisted Carrier Recombination and Optical Nonlinearities in Bulk to 2D Nonlayered PtS. <i>ACS Nano</i> , 2019 , 13, 13390-13402	16.7	22
12	Enhanced NO Sensing at Room Temperature with Graphene via Monodisperse Polystyrene Bead Decoration. <i>ACS Omega</i> , 2019 , 4, 3812-3819	3.9	19
11	Giant and Linear Piezo-Phototronic Response in Layered GaSe Nanosheets. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700447	6.4	11
10	Electrical devices from top-down structured platinum diselenide films. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	50
9	Threshold magnetoresistance in anistropic magnetic 2D transition metal dichalcogenides. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3058-3064	7.1	5
8	Competition Between Anti-Phase Boundaries and Charge-Orbital Ordering in Epitaxial Stepped Fe3O4(100) Thin Films. <i>Spin</i> , 2017 , 07, 1750001	1.3	1
7	Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review. <i>Spin</i> , 2017 , 07, 1740014	1.3	5
6	Quantum Confinement and Gas Sensing of Mechanically Exfoliated GaSe. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600197	6.8	22
5	Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles. <i>Scientific Reports</i> , 2016 , 6, 30320	4.9	27
4	Probing thermal expansion coefficients of monolayers using surface enhanced Raman scattering. <i>RSC Advances</i> , 2016 , 6, 99053-99059	3.7	18
3	Anomalous Anisotropic Magnetoresistance of Antiferromagnetic Epitaxial Bimetallic Films: Mn2Au and Mn2Au/Fe Bilayers. <i>Advanced Functional Materials</i> , 2016 , 26, 5884-5892	15.6	14
2	Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions. <i>Scientific Reports</i> , 2015 , 5, 1598	4 4.9	41
1	Enhanced Shubnikov-De Haas Oscillation in Nitrogen-Doped Graphene. <i>ACS Nano</i> , 2015 , 9, 7207-14	16.7	17