
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904441/publications.pdf Version: 2024-02-01

Μενι-Ηλο Ημ

#	Article	IF	CITATIONS
1	Novel Multicomponent Reactions via Trapping of Protic Onium Ylides with Electrophiles. Accounts of Chemical Research, 2013, 46, 2427-2440.	15.6	552
2	Cooperative Catalysis with Chiral BrÃ,nsted Acid-Rh ₂ (OAc) ₄ : Highly Enantioselective Three-Component Reactions of Diazo Compounds with Alcohols and Imines. Journal of the American Chemical Society, 2008, 130, 7782-7783.	13.7	349
3	Highly enantioselective trapping of zwitterionic intermediates by imines. Nature Chemistry, 2012, 4, 733-738.	13.6	274
4	Diastereoselectively Switchable Enantioselective Trapping of Carbamate Ammonium Ylides with Imines. Journal of the American Chemical Society, 2011, 133, 8428-8431.	13.7	215
5	Novel Spiro Phosphinite Ligands and Their Application in Homogeneous Catalytic Hydrogenation Reactions. Journal of the American Chemical Society, 1997, 119, 9570-9571.	13.7	205
6	Epoxides and Aziridines from Diazoacetates via Ylide Intermediates. Organic Letters, 2001, 3, 933-935.	4.6	162
7	Highly Effective Soluble Polymer-Supported Catalysts for Asymmetric Hydrogenation. Journal of the American Chemical Society, 1999, 121, 7407-7408.	13.7	156
8	Enantioselective Palladium(II) Phosphate Catalyzed Threeâ€Component Reactions of Pyrrole, Diazoesters, and Imines. Angewandte Chemie - International Edition, 2013, 52, 13356-13360.	13.8	152
9	Catalytic Asymmetric Functionalization of Aromatic Cĩ£¿H Bonds by Electrophilic Trapping of Metalâ€Carbeneâ€Induced Zwitterionic Intermediates. Angewandte Chemie - International Edition, 2014, 53, 13098-13101.	13.8	146
10	Dirhodium(II) Tetrakis[methyl 2-oxaazetidine-4-carboxylate]:  A Chiral Dirhodium(II) Carboxamidate of Exceptional Reactivity and Selectivity. Organic Letters, 2000, 2, 1145-1147.	4.6	142
11	Cooperative Catalysis in Multicomponent Reactions: Highly Enantioselective Synthesis of γâ€Hydroxyketones with a Quaternary Carbon Stereocenter. Angewandte Chemie - International Edition, 2010, 49, 2190-2192.	13.8	127
12	Highly Selective Catalyst-Directed Pathways to Dihydropyrroles from Vinyldiazoacetates and Imines. Journal of the American Chemical Society, 2003, 125, 4692-4693.	13.7	126
13	DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 1: Internal benzimidazole derivatives. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1253-1257.	2.2	119
14	Asymmetric Multicomponent Reactions Based on Trapping of Active Intermediates. Chemical Record, 2017, 17, 739-753.	5.8	118
15	Asymmetric Counter-Anion-Directed Aminomethylation: Synthesis of Chiral β-Amino Acids via Trapping of an Enol Intermediate. Journal of the American Chemical Society, 2019, 141, 1473-1478.	13.7	116
16	Three-Component Reaction of Aryl Diazoacetates, Alcohols, and Aldehydes (or Imines):  Evidence of Alcoholic Oxonium Ylide Intermediates. Organic Letters, 2005, 7, 83-86.	4.6	108
17	A New Class of Chiral Lewis Acid Catalysts for Highly Enantioselective Hetero-Diels-Alder Reactions:Â Exceptionally High Turnover Numbers from Dirhodium(II) Carboxamidates. Journal of the American Chemical Society, 2001, 123, 5366-5367.	13.7	104
18	Efficient Trapping of Oxonium Ylides with Imines: A Highly Diastereoselective Three-Component Reaction for the Synthesis of β-Amino-α-hydroxyesters with Quaternary Stereocenters. Angewandte Chemie - International Edition, 2007, 46, 1337-1339.	13.8	104

#	Article	IF	CITATIONS
19	Design, Synthesis, and Structure–Activity Relationship Studies of Novel Fused Heterocycles-Linked Triazoles with Good Activity and Water Solubility. Journal of Medicinal Chemistry, 2014, 57, 3687-3706.	6.4	100
20	A Novel Three-Component Reaction Catalyzed by Dirhodium(II) Acetate:  Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of 1,2-Diamines. Organic Letters, 2003, 5, 3923-3926.	4.6	94
21	Selectivity control in enantioselective four-component reactions of aryl diazoacetates with alcohols, aldehydes and amines: an efficient approach to synthesizing chiral β-amino-α-hydroxyesters. Chemical Communications, 2008, , 6564.	4.1	93
22	An Ylide Transformation of Rhodium(I) Carbene: Enantioselective Threeâ€Component Reaction through Trapping of Rhodium(I)â€Associated Ammonium Ylides by βâ€Nitroacrylates. Angewandte Chemie - International Edition, 2014, 53, 13136-13139.	13.8	90
23	Bicyclic Pyrazolidinone Derivatives from Diastereoselective Catalytic [3 + 3]-Cycloaddition Reactions of Enoldiazoacetates with Azomethine Imines. Organic Letters, 2013, 15, 1564-1567.	4.6	88
24	Bond cleavage, fragment modification and reassembly in enantioselective three-component reactions. Nature Communications, 2015, 6, 5801.	12.8	86
25	Enantioselective Oxidative Cyclization/Mannich Addition Enabled by Gold(I)/Chiral Phosphoric Acid Cooperative Catalysis. Angewandte Chemie - International Edition, 2018, 57, 17200-17204.	13.8	86
26	Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2. Journal of Clinical Investigation, 2017, 127, 3075-3089.	8.2	86
27	Catalytic Enantioselective Trapping of an Alcoholic Oxonium Ylide with Aldehydes: Rh ^{II} /Zr ^{IV} â€Coâ€Catalyzed Threeâ€Component Reactions of Aryl Diazoacetates, Benzyl Alcohol, and Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 6647-6649.	13.8	83
28	A Strategy to Synthesize Taxol Side Chain and (â^')-‹i>epi‹/i> Cytoxazone via Chiral BrÃ,nsted Acid-Rh ₂ (OAc) ₄ Co-catalyzed Enantioselective Three-Component Reactions. Journal of Organic Chemistry, 2010, 75, 7483-7486.	3.2	82
29	Facile Synthesis of 3-Aryloxindoles via BrĄ̃nsted Acid Catalyzed Friedel–Crafts Alkylation of Electron-Rich Arenes with 3-Diazooxindoles. Organic Letters, 2014, 16, 2934-2937.	4.6	80
30	Protein Arginine Methyltransferase 5 (PRMT5) as an Anticancer Target and Its Inhibitor Discovery. Journal of Medicinal Chemistry, 2018, 61, 9429-9441.	6.4	75
31	Salen-Ti(OR)4 complex catalysed trimethylsilylcyanation of aldehydes. Tetrahedron, 1997, 53, 14327-14338.	1.9	74
32	Highly Stereoselective Syntheses of Five- and Seven-Membered Ring Heterocycles from Ylides Generated by Catalytic Reactions of Styryldiazoacetates with Aldehydes and Imines. Organic Letters, 2001, 3, 3741-3744.	4.6	74
33	Trapping of Oxonium Ylide with Isatins:  Efficient and Stereoselective Construction of Adjacent Quaternary Carbon Centers. Organic Letters, 2007, 9, 4721-4723.	4.6	72
34	Diversityâ€Oriented Three omponent Reactions of Diazo Compounds with Anilines and 4â€Oxoâ€Enoates. Angewandte Chemie - International Edition, 2013, 52, 9289-9292.	13.8	71
35	Rhodium(II)―and Copper(II)â€Catalyzed Reactions of Enol Diazoacetates with Nitrones: Metal Carbene versus Lewis Acid Directed Pathways. Angewandte Chemie - International Edition, 2012, 51, 5900-5903.	13.8	69
36	DNA Binding Ligands Targeting Drug-Resistant Bacteria:  Structure, Activity, and Pharmacology. Journal of Medicinal Chemistry, 2003, 46, 3914-3929.	6.4	67

#	Article	IF	CITATIONS
37	Regioselectivity in Lewis acids catalyzed X–H (O, S, N) insertions of methyl styryldiazoacetate with benzyl alcohol, benzyl thiol, and aniline. Tetrahedron Letters, 2007, 48, 3975-3977.	1.4	65
38	Cooperative catalysis in highly enantioselective Mannich-type three-component reaction of a diazoacetophenone with an alcohol and an imine. Chemical Communications, 2011, 47, 797-799.	4.1	65
39	Recent Advances in the Use of Chiral BrÃ,nsted Acids as Cooperative Catalysts in Cascade and Multicomponent Reactions. Asian Journal of Organic Chemistry, 2013, 2, 824-836.	2.7	65
40	Enantiocontrolled Macrocycle Formation by Catalytic Intramolecular Cyclopropanation. Journal of the American Chemical Society, 2000, 122, 5718-5728.	13.7	63
41	Rhodium-Catalyzed Chemo- and Regioselective Cross-Dimerization of Two Terminal Alkynes. Organic Letters, 2013, 15, 840-843.	4.6	63
42	Enantioselective three-component aminomethylation of α-diazo ketones with alcohols and 1,3,5-triazines. Nature Communications, 2020, 11, 1511.	12.8	62
43	Selectivity in Reactions of Allyl Diazoacetates as a Function of Catalyst and Ring Size from γ-Lactones to Macrocyclic Lactones. Journal of Organic Chemistry, 2000, 65, 8839-8847.	3.2	61
44	A New Approach to Macrocyclization via Alkene Formation in Catalytic Diazo Decomposition. Synthesis of Patulolides A and B. Organic Letters, 2000, 2, 1777-1779.	4.6	61
45	Divergent Outcomes of Carbene Transfer Reactions from Dirhodium―and Copperâ€Based Catalysts Separately or in Combination. Angewandte Chemie - International Edition, 2011, 50, 11152-11155.	13.8	61
46	Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones. Journal of the American Chemical Society, 2021, 143, 20818-20827.	13.7	60
47	Highly Chemoselective 2,4,5-Triaryl-1,3-dioxolane Formation from Intermolecular 1,3-Dipolar Addition of Carbonyl Ylide with Aryl Aldehydes. Organic Letters, 2004, 6, 3071-3074.	4.6	57
48	A Novel Method for Synthesizing Nâ€Alkoxycarbonyl Aryl αâ€Imino Esters and Their Applications in Enantioselective Transformations. Advanced Synthesis and Catalysis, 2012, 354, 301-307.	4.3	57
49	Total Synthesis of (S)-(+)-Imperanene. Effective Use of Regio- and Enantioselective Intramolecular Carbonâ~'Hydrogen Insertion Reactions Catalyzed by Chiral Dirhodium(II) Carboxamidates. Journal of Organic Chemistry, 2002, 67, 2954-2959.	3.2	56
50	Catalytic Asymmetric Four-Component Reaction for the Rapid Construction of 3,3-Disubstituted 3-Indol-3′-yloxindoles. Organic Letters, 2015, 17, 4336-4339.	4.6	56
51	Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go?. European Journal of Medicinal Chemistry, 2020, 187, 111922.	5.5	56
52	Highly Enantioselective Catalytic Synthesis of Functionalized Chiral Diazoacetoacetates. Angewandte Chemie - International Edition, 2011, 50, 6392-6395.	13.8	55
53	Pd(ii)-catalyzed formal [4+1] cycloaddition reactions of diazoacetates and aryl propargyl alcohols to form 2,5-dihydrofurans. Chemical Communications, 2015, 51, 15204-15207.	4.1	55
54	Rh ₂ (OAc) ₄ -AgOTf Cooperative Catalysis in Cyclization/Three-Component Reactions for Concise Synthesis of 1,2-Dihydroisoquinolines. Organic Letters, 2010, 12, 652-655.	4.6	54

#	Article	IF	CITATIONS
55	Enantioselective Trapping of Oxonium Ylides by 3-Hydroxyisoindolinones via a Formal S _N 1 Pathway for Construction of Contiguous Quaternary Stereocenters. Organic Letters, 2018, 20, 983-986.	4.6	54
56	Novel C–C bond formation through addition of ammonium ylides to arylaldehydes: a facile approach to β-aryl-β-hydroxy α-amino acid frameworks. Chemical Communications, 2004, , 2486-2487.	4.1	53
57	Highly Efficient Synthesis of Mixed 3,3′-Bisindoles via Rh(II)-Catalyzed Three-Component Reaction of 3-Diazooxindoles with Indoles and Ethyl Glyoxylate. Organic Letters, 2013, 15, 3578-3581.	4.6	53
58	One-pot three-component tandem reaction of diazo compounds with anilines and unsaturated ketoesters: a novel synthesis of 2,3-dihydropyrrole derivatives. Chemical Communications, 2009, , 1362.	4.1	52
59	Enantioselective trapping of phosphoramidate ammonium ylides with imino esters for synthesis of 2,3-diaminosuccinic acid derivatives. Chemical Communications, 2013, 49, 4238.	4.1	52
60	Recent advances in metal carbenoid mediated nitrogen-containing zwitterionic intermediate trapping process. Tetrahedron Letters, 2014, 55, 777-783.	1.4	52
61	In Search of High Stereocontrol for the Construction ofcis-Disubstituted Cyclopropane Compounds. Total Synthesis of a Cyclopropane-Configured Urea-PETT Analogue That Is a HIV-1 Reverse Transcriptase Inhibitor. Organic Letters, 2002, 4, 901-904.	4.6	51
62	A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrofurans That Are t-RNA Synthetase Inhibitor Analogues. Journal of Organic Chemistry, 2004, 69, 4856-4859.	3.2	50
63	Rhodium-Catalyzed, Three-Component Reaction of Diazo Compounds with Amines and Azodicarboxylates. Advanced Synthesis and Catalysis, 2005, 347, 531-534.	4.3	50
64	A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics, 2021, 11, 824-840.	10.0	50
65	Iron Porphyrin-Catalyzed Three-Component Reaction of Ethyl Diazoacetate with Aliphatic Amines and β,γ-Unsaturated α-Keto Esters. Organic Letters, 2013, 15, 6140-6143.	4.6	49
66	Vinylogous Reactivity of Enol Diazoacetates with Donor–Acceptor Substituted Hydrazones. Synthesis of Substituted Pyrazole Derivatives. Journal of Organic Chemistry, 2013, 78, 1583-1588.	3.2	46
67	A highly effective rhodium spirocyclic phosphinite catalyst for the asymmetric hydrogenation of enamides. Tetrahedron Letters, 1999, 40, 973-976.	1.4	45
68	A New Enantioselective Synthesis of Milnacipran and an Analogue by Catalytic Asymmetric Cyclopropanation. Advanced Synthesis and Catalysis, 2001, 343, 299-302.	4.3	44
69	Regio- and Diastereoselective Three-Component Reactions via Trapping of Ammonium Ylides with <i>N</i> -Alkylquinolinium Salts: Synthesis of Multisubstituted Tetra- and Dihydroquinoline Derivatives. Organic Letters, 2017, 19, 3783-3786.	4.6	44
70	Enantioselective Oxidative Multi-Functionalization of Terminal Alkynes with Nitrones and Alcohols for Expeditious Assembly of Chiral α-Alkoxy-β-amino-ketones. Journal of the American Chemical Society, 2021, 143, 14703-14711.	13.7	44
71	Ruthenium(II)/Chiral BrÃ,nsted Acid Coâ€Catalyzed Enantioselective Fourâ€Component Reaction/Cascade Azaâ€Michael Addition for Efficient Construction of 1,3,4â€Tetrasubstituted Tetrahydroisoquinolines. Chemistry - A European Journal, 2014, 20, 1505-1509.	3.3	43
72	Double C–H Functionalization of Indoles via Three-Component Reactions/CuCl ₂ -Catalyzed Aerobic Dehydrogenative Coupling for the Synthesis of Polyfunctional Cyclopenta[<i>b</i>]indoles. ACS Catalysis, 2016, 6, 6146-6150.	11.2	43

#	Article	IF	CITATIONS
73	Enantioselective Synthesis of Fluoroalkyl-Substituted <i>syn</i> -Diamines by the Asymmetric <i>gem</i> -Difunctionalization of 2,2,2-Trifluorodiazoethane. ACS Catalysis, 2020, 10, 4559-4565.	11.2	43
74	Gold(I)-catalyzed intramolecular cyclization/intermolecular cycloaddition cascade as a fast track to polycarbocycles and mechanistic insights. Nature Communications, 2021, 12, 1182.	12.8	43
75	Asymmetric C—H Functionalization of Indoles via Enantioselective Protonation. Acta Chimica Sinica, 2012, 70, 2484.	1.4	43
76	Optimization of enantiocontrol in cis-selective cyclopropanation reactions catalyzed by dirhodium(ii) tetrakis[alkyl 2-oxaazetidine-4(S)-carboxylates]. Chemical Communications, 2000, , 867-868.	4.1	42
77	Divergent Synthesis of Multisubstituted Tetrahydrofurans and Pyrrolidines via Intramolecular Aldolâ€ŧype Trapping of Onium Ylide Intermediates. Chemistry - A European Journal, 2015, 21, 19202-19207.	3.3	42
78	An enantioselective three-component reaction of diazoacetates with indoles and enals by iridium/iminium co-catalysis. Chemical Communications, 2016, 52, 2736-2739.	4.1	42
79	A Rh(II)-catalyzed multicomponent reaction by trapping an α-amino enol intermediate in a traditional two-component reaction pathway. Science Advances, 2017, 3, e1602467.	10.3	42
80	Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Enantioselective Synthesis of Spirooxindole-Fused Thiaindans. Organic Letters, 2018, 20, 4531-4535.	4.6	42
81	Copper(ii)-catalyzed highly diastereoselective three-component reactions of aryl diazoacetates with alcohols and chalcones: an easy access to furan derivatives. Chemical Communications, 2010, 46, 2865.	4.1	41
82	Highly Diastereoselective Multicomponent Cascade Reactions: Efficient Synthesis of Functionalized 1â€Indanols. Angewandte Chemie - International Edition, 2013, 52, 1539-1542.	13.8	41
83	Highly diastereoselective synthesis of 3-hydroxy-2,2,3-trisubstituted indolines via intramolecular trapping of ammonium ylides with ketones. Chemical Communications, 2014, 50, 951-953.	4.1	41
84	Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with inÂvitro and inÂvivo antitumor activities. European Journal of Medicinal Chemistry, 2017, 126, 1083-1106.	5.5	41
85	Reactivity Enhancement for Chiral Dirhodium(II) Tetrakis(Carboxamidates). Advanced Synthesis and Catalysis, 2001, 343, 112-117.	4.3	40
86	Selective Vinylogous Reactivity of Carbene Intermediate in Gold-Catalyzed Alkyne Carbocyclization: Synthesis of Indenols. ACS Catalysis, 2019, 9, 2440-2447.	11.2	40
87	Asymmetric Synthesis XXIV: Chiral Salen-Titanium Complexes-Efficient Catalysts for Asymmetric Trimethyl Silylcyanation of Benzaldehyde. Synlett, 1996, 1996, 337-338.	1.8	39
88	A highly enantioselective four-component reaction for the efficient construction of chiral \hat{l}^2 -hydroxy- $\hat{l}\pm$ -amino acid derivatives. Chemical Communications, 2013, 49, 2700.	4.1	39
89	Enantioselective carbonhydrogen insertion is an effective and efficient methodology for the synthesis of (r)-(-)-baclofen. Chirality, 2002, 14, 169-172.	2.6	38
90	The rhodium catalyzed three-component reaction of diazoacetates, titanium(iv) alkoxides and aldehydes. Chemical Communications, 2005, , 2624.	4.1	38

#	Article	IF	CITATIONS
91	Interception of benzyne with thioethers: a facile access to sulfur ylides under mild conditions. RSC Advances, 2014, 4, 7623-7626.	3.6	37
92	Divergent synthesis of chiral heterocycles via sequencing of enantioselective three-component reactions and one-pot subsequent cyclization reactions. Chemical Communications, 2015, 51, 10612-10615.	4.1	37
93	Catalyst-Free Halogenation of α-Diazocarbonyl Compounds with <i>N</i> -Halosuccinimides: Synthesis of 3-Halooxindoles or Vinyl Halides. Organic Letters, 2016, 18, 3134-3137.	4.6	37
94	The First Kilogram Synthesis of Beclabuvir, an HCV NS5B Polymerase Inhibitor. Organic Process Research and Development, 2018, 22, 1393-1408.	2.7	37
95	Gold-Catalyzed Oxidative Cyclization/Aldol Addition of Homopropargyl Alcohols with Isatins. Organic Letters, 2019, 21, 369-372.	4.6	37
96	Catalyst-Free <i>gem</i> -Difunctionalization of Fluoroalkyl-Substituted Diazo Compound with Diselenide or Disulfide and NFSI. Organic Letters, 2019, 21, 2101-2105.	4.6	36
97	Catalytic Intramolecular Addition of Metal Carbenes to Remote Furans. Organic Letters, 1999, 1, 1327-1329.	4.6	35
98	The synthesis of baclofen and GABOB via Rh(II) catalyzed intramolecular C–H insertion of α-diazoacetamides. Tetrahedron, 2005, 61, 1579-1586.	1.9	35
99	CuSO4-catalyzed three-component reaction of $\hat{I}\pm$ -diazo ester, water and isatin: an efficient approach to oxindole derivatives. Green Chemistry, 2013, 15, 620.	9.0	35
100	Cu(I)-Catalyzed Three-Component Reaction of Diazo Compound with Terminal Alkyne and Nitrosobenzene for the Synthesis of Trifluoromethyl Dihydroisoxazoles. Organic Letters, 2018, 20, 4843-4847.	4.6	35
101	Asymmetric Multicomponent Reactions for Efficient Construction of Homopropargyl Amine Carboxylic Esters. Organic Letters, 2019, 21, 5737-5741.	4.6	35
102	Discovery of Novel Isothiazole, 1,2,3-Thiadiazole, and Thiazole-Based Cinnamamides as Fungicidal Candidates. Journal of Agricultural and Food Chemistry, 2019, 67, 12357-12365.	5.2	35
103	Influences of Catalyst Configuration and Catalyst Loading on Selectivities in Reactions of Diazoacetamides. Barrier to Equilibrium between Diastereomeric Conformations. Organic Letters, 2003, 5, 407-410.	4.6	34
104	Rh(II)/BrÃ,nsted Acid Cocatalyzed Intramolecular Trapping of Ammonium Ylides with Enones: Diastereoselective Synthesis of 2,2,3-Trisubstituted Indolines. Journal of Organic Chemistry, 2014, 79, 8440-8446.	3.2	34
105	Radical Cascade Multicomponent Minisci Reactions with Diazo Compounds. ACS Catalysis, 2022, 12, 1357-1363.	11.2	34
106	Reactivities and selectivities in macrocyclic addition reactions with diazoacetates using copper(I) and rhodium(II) catalysts. Tetrahedron Letters, 2000, 41, 6265-6269.	1.4	33
107	Macrocycle Formation from Catalytic Metal Carbene Transformations. Synlett, 2001, 2001, 1364-1370.	1.8	33
108	Efficient synthesis of oxazoles by dirhodium(ii)-catalyzed reactions of styryl diazoacetate with oximes. Chemical Communications, 2012, 48, 11522.	4.1	33

#	Article	IF	CITATIONS
109	Recent Advances in Asymmetric Metal-Catalyzed Carbene Transfer from Diazo Compounds Toward Molecular Complexity. Advances in Organometallic Chemistry, 2016, 66, 33-91.	1.0	33
110	Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines. Organic Letters, 2016, 18, 6086-6089.	4.6	33
111	Asymmetric Allylation by Chiral Organocatalystâ€Promoted Formal Heteroâ€Ene Reactions of Alkylgold Intermediates. Angewandte Chemie - International Edition, 2021, 60, 1992-1999.	13.8	33
112	Highly Enantioselective Trapping of Carboxylic Oxonium Ylides with Imines for Direct Assembly of Enantioenriched Î ³ -Butenolides. CCS Chemistry, 2020, 2, 432-439.	7.8	32
113	Dual Catalysis in Highly Enantioselective Multicomponent Reaction with Water: An Efficient Approach to Chiral βâ€Aminoâ€I±â€Hydroxy Acid Derivatives. ChemCatChem, 2011, 3, 653-656.	3.7	31
114	Enantioselectivity for catalytic cyclopropanation with diazomalonates. Arkivoc, 2003, 2003, 15-22.	0.5	31
115	Stereoselective Synthesis of Bicyclic Pyrrolidines by a Rhodium-Catalyzed Cascade Process. Angewandte Chemie - International Edition, 2004, 43, 6713-6716.	13.8	30
116	Stereoselective Synthesis of a Sulfated Tetrasaccharide Corresponding to a Rare Sequence in the Galactofucan Isolated from <i>Sargassum polycystum</i> . Journal of Organic Chemistry, 2014, 79, 4718-4726.	3.2	29
117	Enantioselective formal carbene insertion into C–N bond of aminal as a concise track to chiral α-amino-β2,2-amino acids and synthetic applications. Green Synthesis and Catalysis, 2021, 2, 337-344.	6.8	29
118	Highly Diastereoselective Synthesis of Fully Substituted Tetrahydrofurans by a Oneâ€Pot Cascade Reaction of Aryldiazoacetates with Allyl Alcohols. Chemistry - A European Journal, 2009, 15, 12604-12607.	3.3	28
119	A DFT calculation-inspired Rh(<scp>i</scp>)-catalyzed reaction via suppression of α-H shift in α-alkyldiazoacetates. Chemical Science, 2017, 8, 4312-4317.	7.4	28
120	Synthesis of spiro[2,3-dihydrofuran-3,3′-oxindole] derivatives <i>via</i> a multi-component cascade reaction of α-diazo esters, water, isatins and malononitrile/ethyl cyanoacetate. Green Chemistry, 2019, 21, 4936-4940.	9.0	28
121	Metal-Dependent Umpolung Reactivity of Carbenes Derived from Cyclopropenes. IScience, 2019, 14, 292-300.	4.1	28
122	Functionalization of DNA-Tagged Alkenes with Diazo Compounds via Photocatalysis. Organic Letters, 2022, 24, 2208-2213.	4.6	28
123	Synthesis of (â^')-(4R,5R)-4,5-bis[di-3′-(2′,6′-dimethoxypyridyl)phosphinomethyl]-2,2-dimethyl-1,3-dioxola and its application in the Rh-catalyzed asymmetric hydrogenation reactions. Tetrahedron: Asymmetry, 1998, 9, 4183-4192.	ane 1.8	27
124	DNA Binding Ligands with Improved in Vitro and in Vivo Potency against Drug-ResistantStaphylococcus aureus. Journal of Medicinal Chemistry, 2004, 47, 4352-4355.	6.4	27
125	Dirhodium catalyzed intramolecular enantioselective C–H insertion reaction of N-cumyl-N-(2-p-anisylethyl)diazoacetamide: synthesis of (â^)-Rolipram. Tetrahedron: Asymmetry, 2005, 16, 1693-1698.	1.8	27
126	Component match in rhodium catalyzed three-component reactions of ethyl diazoacetate, H2O and aryl imines: a highly diastereoselective one-step synthesis of β-aryl isoserine derivatives. Organic and Biomolecular Chemistry, 2009, 7, 5028.	2.8	27

#	Article	IF	CITATIONS
127	Green chemistry approaches to the regioselective synthesis of spiro heterobicyclic rings using iodine as a new and efficient catalyst under solvent-free conditions. Molecular Diversity, 2011, 15, 257-261.	3.9	27
128	Rhodium(ii) catalyzed diastereoselective reactions of diazoacetamides with isatins: an efficient approach to 3-hydroxy-3,3′-bioxindoles. Organic and Biomolecular Chemistry, 2012, 10, 8808.	2.8	27
129	A highly diastereoselective three-component tandem 1,4-conjugated addition–cyclization reaction to multisubstituted pyrrolidines. Organic and Biomolecular Chemistry, 2012, 10, 2133.	2.8	27
130	Efficient synthesis of chiral cyclic acetals by metal and BrÃ,nsted acid co-catalyzed enantioselective four-component cascade reactions. Chemical Communications, 2014, 50, 2196-2198.	4.1	27
131	Synthesis of 3-Amino-3-hydroxymethyloxindoles and 3-Hydroxy-3-hydroxymethyloxindoles by Rh ₂ (OAc) ₄ -Catalyzed Three-Component Reactions of 3-Diazooxindoles with Formaldehyde and Anilines or Water. Journal of Organic Chemistry, 2014, 79, 3908-3916.	3.2	27
132	BrÃ,nsted Acid Catalyzed Enantioselective Assembly of Spirochroman-3,3-oxindoles. Organic Letters, 2020, 22, 2925-2930.	4.6	27
133	Copper(І) hexafluorophosphate: a dual functional catalyst for three-component reactions of methyl phenyldiazoacetate with alcohols and aldehydes or α-ketoesters. Tetrahedron Letters, 2008, 49, 6862-6865.	1.4	26
134	Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization. Chinese Chemical Letters, 2022, 33, 4969-4979.	9.0	26
135	Diastereoselectivity Switch in Cooperatively Catalyzed Three-Component Reactions of an Aryldiazoacetate, an Alcohol, and a β,γ-Unsaturated α-Keto Ester. Journal of Organic Chemistry, 2011, 76, 5821-5824.	3.2	25
136	Highly Regioselective, Threeâ€Component Reactions of Diazoacetates with Anilines and β,γâ€Unsaturated αâ€Keto Esters: 1,2â€Addition versus 1,4â€Addition. European Journal of Organic Chemistry, 2011, 2011, 1113-1	1 124.	25
137	Gold(I)-Catalyzed and H ₂ O-Mediated Carbene Cascade Reaction of Propargyl Diazoacetates: Furan Synthesis and Mechanistic Insights. Organic Letters, 2018, 20, 5332-5335.	4.6	25
138	Gold-catalyzed dual annulation of azide-tethered alkynes with nitriles: expeditious synthesis of oxazolo[4,5- <i>c</i>]quinolines. Organic Chemistry Frontiers, 2019, 6, 2404-2409.	4.5	25
139	Zinc-Catalyzed Alkyne–Carbonyl Metathesis of Ynamides with Isatins: Stereoselective Access to Fully Substituted Alkenes. Journal of Organic Chemistry, 2019, 84, 15331-15342.	3.2	24
140	Synthesis of spiro[4.4]nonane-1,6-diols via the hydrogenation of spiro[4.4]nonane-1,6-dione: the profound effect of hydrogenating agents. Tetrahedron: Asymmetry, 1995, 6, 2953-2959.	1.8	23
141	Diastereoselective Three omponent Cascade Reaction to Construct Oxindoleâ€Fused SpirotetrahydroÂfurochroman Scaffolds for Drug Discovery. European Journal of Organic Chemistry, 2016, 2016, 2671-2680.	2.4	23
142	Diastereoselective Intramolecular Aldolâ€Type Trapping of Zwitterionic Intermediates by Ketones for the Synthesis of Spiro[chromanâ€4,3′â€oxindole] Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 58-63.	4.3	23
143	Privilege-Structure-Oriented Three-Component Asymmetric Aminomethylation: Assembly of Chiral 3-Aminomethyl Indolones. Organic Letters, 2019, 21, 9878-9883.	4.6	23
144	Gold-catalyzed ketene dual functionalization and mechanistic insights: divergent synthesis of indenes and benzo[d]oxepines. Science China Chemistry, 2021, 64, 778-787.	8.2	23

#	Article	IF	CITATIONS
145	Asymmetric Synthesis XXVIII: Novel Chiral Aminophosphine Phosphinite Ligand and Its Application in Homogenous Catalytic Asymmetric Hydrogenation of Dehydroamino Acid Derivatives. Synlett, 1998, 1998, 847-848.	1.8	22
146	Copper-catalyzed [4+1]-annulation of 2-alkenylindoles with diazoacetates: a facile access to dihydrocyclopenta[<i>b</i>]indoles. Chemical Communications, 2019, 55, 6393-6396.	4.1	22
147	Optimization of P2Y ₁₂ Antagonist Ethyl 6-(4-((Benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283) Led to the Discovery of an Oral Antiplatelet Agent with Improved Druglike Properties. Journal of Medicinal Chemistry. 2019. 62. 3088-3106.	6.4	22
148	Rhodium(II)â€Catalyzed Formal [4+1]â€Cycloaddition of Pyridotriazoles and Propargyl Alcohols: Synthesis of 2,5â€Dihydrofurans. Advanced Synthesis and Catalysis, 2019, 361, 1265-1270.	4.3	22
149	DNA binding ligands with in vivo efficacy in murine models of bacterial infection: optimization of internal aromatic amino acids. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2067-2072.	2.2	21
150	Design, synthesis, and antibacterial activity of 2,5-dihydropyrrole formyl hydroxyamino derivatives as novel peptide deformylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3592-3595.	2.2	21
151	Therapeutic Melting Pot of Never in Mitosis Gene A Related Kinase 2 (Nek2): A Perspective on Nek2 as an Oncology Target and Recent Advancements in Nek2 Small Molecule Inhibition. Journal of Medicinal Chemistry, 2014, 57, 5835-5844.	6.4	21
152	Blue Light-Promoted Formal [4+1]-Annulation of Diazoacetates with <i>o</i> -Aminoacetophenones: Synthesis of Polysubstituted Indolines and Computational Study. Journal of Organic Chemistry, 2020, 85, 13920-13928.	3.2	21
153	Enantioselective Intermolecular Mannich-Type Interception of Phenolic Oxonium Ylide for the Direct Assembly of Chiral 2,2-Disubstituted Dihydrobenzofurans. ACS Catalysis, 2021, 11, 6750-6756.	11.2	21
154	Synthesis of a chiral pyridylphosphine ligand and a comparison of its rhodium complex with the structurally similar arylphosphine rhodium catalysts in the asymmetric hydrogenation of 2-(6′-methoxy-2′-naphthyl)propenoic acid. Tetrahedron: Asymmetry, 1998, 9, 3241-3246.	1.8	20
155	Metal-Catalyzed Cross-Coupling of Terminal Alkynes with Different Carbene Precursors. Current Organic Chemistry, 2015, 20, 41-60.	1.6	20
156	Divergent Construction of Macrocyclic Alkynes via Catalytic Metal Carbene C(sp ²)–H Insertion and the Buchner Reaction. ACS Catalysis, 2019, 9, 10773-10779.	11.2	20
157	Diazo Compounds-Involved Catalytic Asymmetric Multicomponent Reactions. Chinese Journal of Organic Chemistry, 2014, 34, 1268.	1.3	20
158	Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes. IScience, 2019, 21, 499-508.	4.1	19
159	Rhodium-Catalyzed Nitrene/Alkyne Metathesis: An Enantioselective Process for the Synthesis of <i>N</i> -Heterocycles. Organic Letters, 2019, 21, 3328-3331.	4.6	19
160	Gold-Catalyzed 1,2-Acyloxy Migration/Coupling Cascade of Propargyl Diazoacetates: Synthesis of Isomycin Derivatives. Organic Letters, 2019, 21, 1813-1817.	4.6	19
161	Design, synthesis and antibacterial activity of 3-methylenepyrrolidine formyl hydroxyamino derivatives as novel peptide deformylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1060-1063.	2.2	18
162	Synthesis of 3-(hydroxymethyl)-3-indol-3′-yloxindoles via Rh(II)-catalyzed three-component reaction of 3-diazooxindoles, indoles and formalin. Tetrahedron, 2015, 71, 3597-3602.	1.9	18

#	Article	IF	CITATIONS
163	Enantioselective oxidative functionalization of the C _{sp3} –H bond adjacent to a nitrogen atom for rapid access to β-hydroxyl-α-amino acid derivatives. Chemical Communications, 2016, 52, 11831-11833.	4.1	18
164	Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 6959-6978.	6.4	18
165	Diastereoselective three-component reactions of aryldiazoacetates with alcohols/water and alkynals: application to substituted enelactones. Organic and Biomolecular Chemistry, 2011, 9, 3839.	2.8	17
166	Regio- and Diastereoselective Construction of α-Hydroxy-δ-amino Ester Derivatives via 1,4-Conjugate Addition of β,γ-Unsaturated <i>N</i> -Sulfonylimines. Journal of Organic Chemistry, 2014, 79, 4142-4147.	3.2	17
167	Formal Carbene Insertion into Câ^'O or Câ^'N Bond: An Efficient Strategy for the Synthesis of 2â€Substituted 2 <i>H</i> â€Chromene Derivatives from Chromene Acetals or Hemiaminal Ethers. Advanced Synthesis and Catalysis, 2018, 360, 2446-2452.	4.3	17
168	Diastereoselective synthesis of isochromans <i>via</i> the Cu(<scp>ii</scp>)-catalysed intramolecular Michael-type trapping of oxonium ylides. Chemical Communications, 2018, 54, 12650-12653.	4.1	17
169	Cu(I)-Catalyzed Three-Component Reaction of α-Diazo Amide with Terminal Alkyne and Isatin Ketimine via Electrophilic Trapping of Active Alkynoate-Copper Intermediate. Organic Letters, 2019, 21, 4571-4574.	4.6	17
170	Efficient synthesis of α-aryl serine derivatives via three-component reactions of aryldiazoacetates, anilines and formaldehyde. Tetrahedron, 2013, 69, 11203-11208.	1.9	16
171	Efficient synthesis of dihydropyrido[4,3-d]pyrimidines by microwave-promoted three-component aza-Diels–Alder reaction. Tetrahedron Letters, 2013, 54, 267-271.	1.4	16
172	Iron catalyzed efficient synthesis of poly-functional primary amines via the direct use of ammonia. Chemical Communications, 2017, 53, 2854-2857.	4.1	16
173	Synthesis and biological activity evaluation of dolastatin 10 analogues with N-terminal modifications. Tetrahedron, 2017, 73, 2255-2266.	1.9	16
174	Enantioselective Oxidative Cyclization/Mannich Addition Enabled by Gold(I)/Chiral Phosphoric Acid Cooperative Catalysis. Angewandte Chemie, 2018, 130, 17446-17450.	2.0	16
175	Trapping of Zwitterionic Intermediates by Isatins and Imines: Synthesis of Benzoxazines Bearing a C4-Quaternary Stereocenter. Organic Letters, 2019, 21, 4014-4018.	4.6	16
176	Gold(<scp>i</scp>)-catalyzed redox transformation of <i>o</i> -nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Organic Chemistry Frontiers, 2021, 8, 1808-1816.	4.5	16
177	Highly diasteroselective intermolecular 1,3-dipolar cycloaddition reactions of carbonyl ylides with aldimines to afford sterically disfavored cis-oxazolidines. Organic Chemistry Frontiers, 2014, 1, 181.	4.5	15
178	Small molecules enhance functional O-mannosylation of Alpha-dystroglycan. Bioorganic and Medicinal Chemistry, 2015, 23, 7661-7670.	3.0	15
179	Pd(II)/β-ICD-Cocatalyzed Asymmetric Route to Oxindole Scaffold via Cascade Reaction of Diazoacetamides and MBH-Carbonates. Journal of Organic Chemistry, 2016, 81, 8537-8543.	3.2	15
180	Synthesis of Î ³ -Sulfur-Substituted Ketones via Rh(II)/Sc(III) a Cocatalyzed Three-Component Reaction of Diazo Compounds with Thiophenols and Enones. Journal of Organic Chemistry, 2018, 83, 4786-4791.	3.2	15

#	Article	IF	CITATIONS
181	Iron-catalyzed [3 + 2]-cycloaddition of <i>in situ</i> generated <i>N</i> -ylides with alkynes or olefins: access to multi-substituted/polycyclic pyrrole derivatives. Organic and Biomolecular Chemistry, 2020, 18, 409-414.	2.8	15
182	Rh-Catalyzed nitrene alkyne metathesis/formal C–N bond insertion cascade: synthesis of 3-iminoindolines. Organic Chemistry Frontiers, 2020, 7, 1327-1333.	4.5	15
183	Asymmetric Three-Component Propargyloxylation for Direct Assembly of Polyfunctionalized Chiral Succinate Derivatives. CCS Chemistry, 2021, 3, 1903-1912.	7.8	15
184	Copper-catalyzed formal [1 + 2 + 2]-annulation of alkyne-tethered diazoacetates and pyridines: access to polycyclic indolizines. Organic and Biomolecular Chemistry, 2020, 18, 1926-1932.	2.8	15
185	One-pot Enantioselective Multi-component Cascade Reactions for Synthesis of Chiral Functionalized Hydro-epoxyisochromenes: A Rapid Access toMolecular Complexity. Acta Chimica Sinica, 2016, 74, 54.	1.4	15
186	Comparative enantiocontrol with allyl phenyldiazoacetates in asymmetric catalytic intramolecular cyclopropanation. Chirality, 2003, 15, 369-373.	2.6	14
187	Enantioselective Formal [3 + 1 + 1] Cycloaddition Reaction by Ru(II)/Iminium Cocatalysis for Construction of Multisubstituted Pyrrolidines. Organic Letters, 2017, 19, 1290-1293.	4.6	14
188	1,2-Addition of Phenylacetylene to Aldimines Catalyzed by InCl3/CuCl in Water under Barbier Conditions. Synlett, 2011, 2011, 627-630.	1.8	13
189	Trapping of Transient Zwitterionic Intermediates by <i>N</i> -Acylpyridinium Salts: A Palladium-Catalyzed Diastereoselective Three-Component Reaction. Journal of Organic Chemistry, 2017, 82, 5952-5958.	3.2	13
190	Enantioselective Multicomponent Reaction for Rapid Construction of 1,2,5-Triol Derivatives with Vicinal Chiral Centers. Journal of Organic Chemistry, 2017, 82, 5212-5221.	3.2	13
191	A highly diastereoselective [5+1] annulation to 2,2,3-trisubstituted tetrahydroquinoxalines <i>via</i> intramolecular Mannich-type trapping of ammonium ylides. Chemical Communications, 2019, 55, 9809-9812.	4.1	13
192	Catalytic asymmetric synthesis of 2,5-dihydrofurans using synergistic bifunctional Ag catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8737-8744.	2.8	13
193	Rhodium-Catalyzed Formal C–O Insertion in Carbene/Alkyne Metathesis Reactions: Synthesis of 3-Substituted 3 <i>H</i> -Indol-3-ols. Organic Letters, 2019, 21, 4322-4326.	4.6	13
194	Goldâ€Catalyzed Carbocyclization/C=N Bond Formation Cascade of Alkyneâ€Tethered Diazo Compounds with Benzo[<i>c</i>]isoxazoles for the Assembly of 4â€Iminonaphthalenones and Indenes. Advanced Synthesis and Catalysis, 2021, 363, 4018-4023.	4.3	13
195	A Facile Access to Polyfunctional Oxygen ontaining Heterocycles via Intramolecularly Formed Protic Oxonium Ylide Trapping Processes. Chemistry - an Asian Journal, 2014, 9, 117-120.	3.3	12
196	A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted α,β-Diamino Acid Derivatives To Hunt Hits. Journal of Organic Chemistry, 2017, 82, 2862-2869.	3.2	12
197	Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1105-1108.	2.2	12
198	Enantioselective trapping of oxonium ylide intermediates by N -benzhydryl- α -imino ester: Synthesis of β -tetrasubstituted α -amino acids. Chinese Chemical Letters, 2017, 28, 213-217.	9.0	12

#	Article	IF	CITATIONS
199	Rhodium-Catalyzed Sequential Cycloisomerization/Aldol Addition of Cyclopropene Carboxylic Acids with Isatins. Organic Letters, 2020, 22, 5600-5604.	4.6	12
200	Design, synthesis and biological evaluation of novel scaffold benzo[4,5]imidazo [1,2-a]pyrazin-1-amine: Towards adenosine A2A receptor (A2A AR) antagonist. European Journal of Medicinal Chemistry, 2021, 210, 113040.	5.5	12
201	Enantioselective assembly of 3,3-disubstituted succinimides <i>via</i> three-component reaction of vinyl diazosuccinimides with alcohols and imines. Chemical Communications, 2021, 57, 8043-8046.	4.1	12
202	Photoredox-Catalyzed Carbonyl Alkylative Amination with Diazo Compounds: A Three-Component Reaction for the Construction of Î ³ -Amino Acid Derivatives. Organic Letters, 2022, 24, 4908-4913.	4.6	12
203	Highly Enantioselective Three-Component Reactions of tert-Butyl Diazoacetate with Arylamines and Imines: An Efficient Synthesis of α,β-Bis(arylamino) Acid Derivatives. Synthesis, 2013, 45, 452-458.	2.3	11
204	Synthesis, antibacterial activity, and biological evaluation of formyl hydroxyamino derivatives as novel potent peptide deformylase inhibitors against drug-resistant bacteria. European Journal of Medicinal Chemistry, 2014, 86, 133-152.	5.5	11
205	Design, Synthesis and Biological Evaluation of Isothiazole Based 1,2,4â€Trizaole Derivatives. Chinese Journal of Chemistry, 2018, 36, 731-736.	4.9	11
206	A gold(<scp>i</scp>)-catalysed three-component reaction <i>via</i> trapping oxonium ylides with allenamides. Chemical Communications, 2019, 55, 12675-12678.	4.1	11
207	Rh(II)/Ag(I)-Cocatalyzed Three-Component Reaction <i>via</i> S _N 1/S _N 1′-Type Trapping of Oxonium Ylide with the Nicholas Intermediate. Journal of Organic Chemistry, 2020, 85, 9850-9862.	3.2	11
208	Preclinical activity of MBM-5 in gastrointestinal cancer by inhibiting NEK2 kinase activity. Oncotarget, 2016, 7, 79327-79341.	1.8	11
209	Trapping of Carboxylic Oxonium Ylides with N-Boc Imines for the Facile Synthesis of β-Amino Alcohol Derivatives. Synlett, 2014, 25, 1745-1750.	1.8	10
210	Rh2(OAc)4 and Chiral Phosphoric Acid Cocatalyzed Highly Diastereo- and Enantioselective Four-Component Reactions: Facile Synthesis of Chiral α,β-Diamino Acid Derivatives. Synthesis, 2014, 46, 1348-1354.	2.3	10
211	Three-component reactions based on trapping ammonium ylides with N-sulfonyl aldimines via cooperative catalysis of squaramides and Rh2(OAc)4. Tetrahedron, 2014, 70, 1471-1477.	1.9	10
212	Rh2(OAc)4 and InCl3 co-catalyzed diastereoselective trapping of carbamate ammonium ylides with aldehydes for the synthesis of β-hydroxyl-α-amino acid derivatives. Tetrahedron, 2016, 72, 579-583.	1.9	10
213	Synthesis and biological evaluation of 3-amino-3-hydroxymethyloxindoles as potential anti-cancer agents. RSC Advances, 2017, 7, 23265-23271.	3.6	10
214	Gold atalyzed Dual Annulation of Homopropargyl Alcohols with Nitrones: Synthesis of Tetrahydropyrano[4,3â€ <i>b</i>]indole Scaffolds. Advanced Synthesis and Catalysis, 2019, 361, 3569-3574.	4.3	10
215	A gold(<scp>i</scp>)-catalysed chemoselective three-component reaction between phenols, α-diazocarbonyl compounds and allenamides. Chemical Communications, 2020, 56, 1649-1652.	4.1	10
216	Synthesis and biological evaluation of substituted pyrrolidines and pyrroles as potential anticancer agents. Archiv Der Pharmazie, 2020, 353, e2000136.	4.1	10

#	Article	IF	CITATIONS
217	Discovery of Novel Antibiotics as Covalent Inhibitors of Fatty Acid Synthesis. ACS Chemical Biology, 2020, 15, 1826-1834.	3.4	10
218	InBr3 catalyzed three-component reactions of an aryldiazoacetate, an alcohol, and a carbonyl compound. Tetrahedron Letters, 2012, 53, 182-185.	1.4	9
219	Alkaloid Synthesis via Carbenoid Intermediates. Current Organic Chemistry, 2015, 20, 82-101.	1.6	9
220	A transformation of cyclopropyl carbene: a highly enantioselective three-component reaction via trapping oxonium ylide by imine. Tetrahedron, 2016, 72, 2929-2934.	1.9	9
221	An efficient stereoselective synthesis of six stereoisomers of 3, 4-diaminocyclohexane carboxamide as key intermediates for the synthesis of factor Xa inhibitors. Tetrahedron, 2017, 73, 1381-1388.	1.9	9
222	Deactivating Influence of 3- <i>O</i> -Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. Journal of Organic Chemistry, 2017, 82, 2599-2621.	3.2	9
223	An Isoform-Selective PTP1B Inhibitor Derived from Nitrogen-Atom Augmentation of Radicicol. Biochemistry, 2019, 58, 3225-3231.	2.5	9
224	Dirhodium-catalyzed enantioselective C-H insertion ofN-(2-benzyloxyethyl)-N-(tert-butyl)diazoacetamide and its application for the synthesis of chiral GABOB. Chirality, 2004, 16, 516-519.	2.6	8
225	An efficient route for the construction of cyclopenta[b]quinoline derivatives via intramolecular cyclopropanation. Tetrahedron, 2007, 63, 11850-11855.	1.9	8
226	A Rh(<scp>ii</scp>)-catalyzed three-component reaction of 3-diazooxindoles with N,N-disubstituted anilines and glyoxylates for the synthesis of 3-aryl-3-substituted oxindoles. Organic and Biomolecular Chemistry, 2016, 14, 10157-10160.	2.8	8
227	New peptide deformylase inhibitors design, synthesis and pharmacokinetic assessment. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3714-3718.	2.2	8
228	A rhodium-catalysed three-component reaction to access C1-substituted tetrahydroisoquinolines. Organic and Biomolecular Chemistry, 2019, 17, 9844-9848.	2.8	8
229	A Cleavageâ€Modificationâ€Reassembly Process Catalyzed by Rhodium and BrÃnsted Acid for the Synthesis of Multi‣ubstituted Anilines. Advanced Synthesis and Catalysis, 2020, 362, 1961-1965.	4.3	8
230	Ruthenium-Catalyzed Diastereoselective Synthesis of Fully Substituted Pyrrolidines from Anilines and Diazo Pyruvates. Organic Letters, 2020, 22, 3094-3098.	4.6	8
231	A Rh-catalyzed three-component reaction for the diastereoselective synthesis of pyrazolone derivatives with contiguous quaternary stereocenters. Organic and Biomolecular Chemistry, 2020, 18, 3466-3470.	2.8	8
232	Asymmetric N—H Insertion Reaction of <i>α</i> -Diazoesters and Carbamates Co-catalyzed by Dirhodium Acetate, Sufonic Acid and Chiral Sulfonamide Urea. Chinese Journal of Organic Chemistry, 2014, 34, 107.	1.3	8
233	Discovery of Novel Benzo[4,5]imidazo[1,2-‹i>a‹/i>]pyrazin-1-amine-3-amide-one Derivatives as Anticancer Human A _{2A} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2022, 65, 8933-8947.	6.4	8
234	Complete Diastereofacial Selective Cycloaddition of New Sulfinyl Dienophiles (Ss)-and (Rs)-(-)Menthyl α-(2-Methoxyphenylsulfoxyl)acylate with Anthracene Under Chelation Control. Synthetic Communications, 1996, 26, 1867-1874.	2.1	7

#	Article	IF	CITATIONS
235	Rhodium(II) catalyzed multi-component reactions of aryldiazoacetates with titanium(IV) isopropoxide and imines. Tetrahedron, 2009, 65, 8277-8282.	1.9	7
236	Rh(II) Catalyzed Three-Component Reactions of Diazoacetates with Benzenemethanol and Indane-1, 2, 3-Triones. Letters in Organic Chemistry, 2010, 7, 106-109.	0.5	7
237	A stereoselective synthesis of fully substituted tetrahydrofurans through 1,3-dipolar cycloaddition with cinnamaldehydes: an easy access to chroman derivatives. RSC Advances, 2013, 3, 20065.	3.6	7
238	Intramolecular cycloaddition/rearrangement cascade from gold(<scp>iii</scp>)-catalysed reactions of propargyl aryldiazoesters with cinnamyl imines. Chemical Communications, 2018, 54, 12828-12831.	4.1	7
239	Formal carbene insertion into C O double bond: A facile approach to the synthesis of 2H-chromenes. Tetrahedron, 2018, 74, 4551-4557.	1.9	7
240	Rh(I)/Sc(OTf)3-co-catalyzed Michael addition of ammonium ylide to (E)-1,4-enediones: synthesis of functionalized 1,4-diketones. Molecular Diversity, 2019, 23, 997-1010.	3.9	7
241	A Rh(ii)/phosphoric acid co-catalyzed three-component reaction of diazo-ketones with alcohols and azonaphthalenes: access to indole derivatives via a formal [3 + 2]-cycloaddition. Organic and Biomolecular Chemistry, 2020, 18, 9805-9809.	2.8	7
242	An asymmetric oxidative cyclization/Mannich-type addition cascade reaction for direct access to chiral pyrrolidin-3-ones. Chemical Communications, 2021, 57, 12171-12174.	4.1	7
243	Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans. Science China Chemistry, 2022, 65, 1607-1614.	8.2	7
244	Asymmetric Synthesis. XX. Asymmetric Oxidative Coupling Reaction of Imine Carbanions via (+)-Camphor Chiral Template. Synthetic Communications, 1994, 24, 3115-3122.	2.1	6
245	Influence of the Diene in the Hetero-Diels-Alder Reaction Catalyzed by Dirhodium(II) Carboxamidates. Synlett, 2004, 2004, 2425-2428.	1.8	6
246	Rh(II) and Zn(II) co-catalyzed multi-component reaction for the synthesis of vicinal diols. Chinese Chemical Letters, 2009, 20, 1299-1302.	9.0	6
247	A convenient one-pot approach to Paclitaxel (Taxol) side chain via 1,3-dipolar cycloaddition of carbonyl ylides and N -benzoylbenzyl imines. Tetrahedron Letters, 2018, 59, 2141-2144.	1.4	6
248	Diastereoselective Trapping of Transient Carboxylic Oxonium Ylides with α,βâ€Unsaturated 2â€Acyl Imidazoles. Advanced Synthesis and Catalysis, 2020, 362, 4662-4667.	4.3	6
249	Rhodium catalyzed direct C3-ethoxycarbonylmethylation of imidazo[1,2-a]pyridines with ethyl diazoacetate. Tetrahedron, 2020, 76, 130998.	1.9	6
250	Structure-based discovery of potent and selective small-molecule inhibitors targeting signal transducer and activator of transcription 3 (STAT3). European Journal of Medicinal Chemistry, 2021, 221, 113525.	5.5	6
251	(R)-3,3'-BIS(9-PHENANTHRYL)-1,1'-BINAPHTHALENE-2,2'-DIYL HYDROGEN PHOSPHATE. Organic Syntheses, 2011, 88, 406.	1.0	6
252	Efficient and Facile Synthesis of Chiral Sulfonamides via Asymmetric Multicomponent Reactions. Acta Chimica Sinica, 2018, 76, 895.	1.4	6

#	Article	IF	CITATIONS
253	An asymmetric catalytic multi-component reaction enabled the green synthesis of isoserine derivatives and semi-synthesis of paclitaxel. Green Synthesis and Catalysis, 2023, 4, 58-63.	6.8	6
254	Trapping of Oxonium Ylides with Michael Acceptors: Highly Diastereoselective Three-Component Reactions of Diazo Compounds with Alcohols and Benzylidene Meldrum's Acids/4-Oxo-enoates. Synlett, 2011, 2011, 1717-1722.	1.8	5
255	Synthesis of Novel and Complex Tetrahydroquinazolinedione and DihydroÂpyrido[2,3-d]pyrimidine Derivatives via a One-Pot [4+2]-Cycloadddition Strategy. Synlett, 2013, 24, 471-474.	1.8	5
256	Facile synthesis of 1,4-oxazines by ruthenium-catalyzed tandem N–H insertion/cyclization of α-arylamino ketones and diazo pyruvates. Organic and Biomolecular Chemistry, 2021, 19, 1769-1772.	2.8	5
257	Synergistic Activation Strategy to Achieve Rh2(II)-Catalyzed Asymmetric Cycloisomerization of 1,n-Enynes. Chinese Journal of Organic Chemistry, 2020, 40, 4370.	1.3	5
258	An asymmetric three-component reaction of a diazo compound with an alcohol and a seven-membered imine. Organic Chemistry Frontiers, 2022, 9, 2102-2108.	4.5	5
259	Enantiocontrol in Macrocycle Formation from Catalytic Metal Carbene Transformations. Chinese Journal of Chemistry, 2001, 19, 22-29.	4.9	4
260	Practical and Scalable Synthesis of Ethyl (R)-Piperidine-3-acetate. Synthetic Communications, 2012, 42, 1137-1145.	2.1	4
261	Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus. Chinese Chemical Letters, 2015, 26, 763-767.	9.0	4
262	A sustainable catalytic enantioselective synthesis of norstatine derivatives. Organic and Biomolecular Chemistry, 2019, 17, 9792-9798.	2.8	4
263	Asymmetric Allylation by Chiral Organocatalystâ€Promoted Formal Heteroâ€Ene Reactions of Alkylgold Intermediates. Angewandte Chemie, 2021, 133, 2020-2027.	2.0	4
264	Highly diastereoselective synthesis of vicinal diamines <i>via</i> a Rh-catalyzed three-component reaction of diazo compounds with diarylmethanimines and ketimines. Organic Chemistry Frontiers, 2021, 8, 2997-3003.	4.5	4
265	Enantioselective Propargylation of Oxonium Ylide with α-Propargylic-3-Indolymethanol: Access to Chiral Propargylic Indoles. Organic Letters, 2022, 24, 1027-1032.	4.6	4
266	Diastereoselective aldol-type interception of phenolic oxonium ylides for the direct assembly of 2,2-disubstituted dihydrobenzofurans. Organic and Biomolecular Chemistry, 2022, 20, 4635-4639.	2.8	4
267	Trapping of an Ammonium Ylide with Activated Ketones: Synthesis of β-Hydroxy-α-Amino Esters with Adjacent Quaternary Stereocenters. Synlett, 2009, 2009, 2109-2114.	1.8	3
268	Novel C-S Bond Formation Through α',β-Elimination of tert-Butyl Sulfoxonium Ylides: A Facile Approach to Chiral Sulfoxides. Synlett, 2009, 2009, 2183-2187.	1.8	3
269	Step-economy etherification of acylated alcohols. Tetrahedron Letters, 2014, 55, 6836-6838.	1.4	3
270	Synthesis and biological evaluation of novel potent FFA1 agonists containing 2,3-dihydrobenzo[b][1,4]dioxine. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 848-852.	2.2	3

#	Article	IF	CITATIONS
271	gem-Difunctionalization of α-diazoarylketones with diaryldiselenides and N-halosuccinimides: facile synthesis of α-halo-α-arylseleno ketones. Molecular Diversity, 2021, 25, 2459-2466.	3.9	3
272	Catalyst-free <i>gem</i> -chlorosulfurization of difluoromethyl-substituted diazo compounds with disulfide and PhICl ₂ . Organic and Biomolecular Chemistry, 2021, 19, 8030-8034.	2.8	3
273	A Concise Synthesis of Gabapentin via Intramolecular C-CH Insertion Reaction. Synlett, 2003, 2003, 1965-1966.	1.8	2
274	Facile Synthesis of Aryl α-Keto Esters via the Reaction of Aryl Diazoacetate with H2O and DEAD. Synlett, 2006, 2006, 2486-2488.	1.8	2
275	Rhodium-Catalyzed Reaction of Diazoacetates, Thiols and Azodicarboxylates: An Unusual 1,2-Aza Shift from a Sulfonium Ylide. Synlett, 2007, 2007, 1314-1316.	1.8	2
276	Discovery of Bisindole as a Novel Scaffold for Protein Tyrosine Phosphatase 1B Inhibitors. Archiv Der Pharmazie, 2017, 350, e1600173.	4.1	2
277	Ruthenium(II)-catalyzed facile synthesis of 3-(phenylamino)-1H-indole-2-carboxylates from anilines and diazo pyruvates promoted by FeCl3. Tetrahedron, 2021, 77, 131399.	1.9	2
278	ENANTIOSELECTIVE THREE-COMPONENT REACTION FOR THE PREPARATION OF ß-AMINO-a-HYDROXY ESTERS. Organic Syntheses, 2011, 88, 418.	1.0	2
279	Synthesis of dihydrofuran-3-one and 9,10-phenanthrenequinone hybrid molecules and biological evaluation against colon cancer cells as selective Akt kinase inhibitors. Molecular Diversity, 2023, 27, 845-855.	3.9	2
280	Cumyl: A Better N-Protecting Group of α-Diazo Acetamides for IntraÂmolecular C-H Insertion Reaction and its Application in the Synthesis of ÂPregabalin and 3-Benzyloxy Pyrrolidine. Synlett, 2004, 2004, 1763-1764.	1.8	1
281	Desaturation via Redox-Neutral Hydrogen Transfer Process: Synthesis of 2-Allyl Anilines, Mechanism and Applications. IScience, 2020, 23, 101168.	4.1	1
282	Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues. Chinese Journal of Organic Chemistry, 2019, 39, 377.	1.3	1
283	A Rh(II)-catalyzed highly stereoselective [3 + 2] annulation of vinyl diazoacetates with indole-2-carbaldehyde for the synthesis of indolyl dihydrofurans. Molecular Diversity, 2022, 26, 3379-3386.	3.9	1
284	A diastereoselective three-component reaction for the assembly of succinimide and isatin hybrid molecules with potent anticancer activities. Molecular Diversity, 2023, 27, 837-843.	3.9	1
285	Diastereoselective alkylation of the (+)â€ketopinic acid ketimine derived from benzylamine. Chinese Journal of Chemistry, 1990, 8, 542-548.	4.9	0
286	A Novel Three-Component Reaction Catalyzed by Dirhodium(II) Acetate: Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of 1,2-Diamines ChemInform, 2004, 35, no.	0.0	0
287	A Facile Three-Component One-Pot Synthesis of Structurally Constrained Tetrahydrofurans that Are t-RNA Synthetase Inhibitor Analogues ChemInform, 2004, 35, no.	0.0	0
288	Highly Chemoselective 2,4,5-Triaryl-1,3-dioxolane Formation from Intermolecular 1,3-Dipolar Addition of Carbonyl Ylide with Aryl Aldehydes ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
289	Novel C?C Bond Formation Through Addition of Ammonium Ylides to Arylaldehydes: A Facile Approach to ?-Aryl-?-hydroxy ?-Amino Acid Frameworks ChemInform, 2005, 36, no.	0.0	0
290	Stereoselective Synthesis of Bicyclic Pyrrolidines by a Rhodium-Catalyzed Cascade Process ChemInform, 2005, 36, no.	0.0	0
291	Three-Component Reaction of Aryl Diazoacetates, Alcohols, and Aldehydes (or Imines): Evidence of Alcoholic Oxonium Ylide Intermediates ChemInform, 2005, 36, no.	0.0	0
292	The Synthesis of Baclofen and GABOB via Rh(II) Catalyzed Intramolecular C?H Insertion of ?-Diazoacetamides ChemInform, 2005, 36, no.	0.0	0
293	The Rhodium Catalyzed Three-Component Reaction of Diazoacetates, Titanium(IV) Alkoxides and Aldehydes ChemInform, 2005, 36, no.	0.0	0
294	Rhodium Acetate-Mediated Epoxidation from the Reaction of DiazobenzylÂphosphonates with Aldehydes and a Ketone: A Convenient and Highly Stereoselective Synthetic Method ofcis-1,2-Epoxypropylphosphonates. Synlett, 2005, 2005, 1711-1715.	1.8	0
295	In Search of High Stereocontrol for the Construction of cisâ€Disubstituted Cyclopropane Compounds. Total Synthesis of a Cyclopropaneâ€Configured Ureaâ€PETT Analogue that Is a HIVâ€1 Reverse Transcriptase Inhibitor ChemInform, 2002, 33, 73-73.	0.0	0
296	3-Diazo-N-[(2S)-1-hydroxypropan-2-yl]-2-oxopropanamide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1192-o1192.	0.2	0
297	Improved Synthesis of Yt-14, A Potent Antibiotic to Multidrug-Resistant Strains. Journal of Chemical Research, 2018, 42, 354-360.	1.3	0