Yinyue Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904352/publications.pdf Version: 2024-02-01

VINVUE DENC

#	Article	IF	CITATIONS
1	Structural analyses of the AAA+ ATPase domain of the transcriptional regulator GtrR in the BDSF quorumâ€sensing system in <i>Burkholderia cenocepacia</i> . FEBS Letters, 2022, 596, 71-80.	1.3	3
2	The <i>cis</i> -2-Dodecenoic Acid (BDSF) Quorum Sensing System in Burkholderia cenocepacia. Applied and Environmental Microbiology, 2022, 88, aem0234221.	1.4	8
3	An anthranilic acid-responsive transcriptional regulator controls the physiology and pathogenicity of Ralstonia solanacearum. PLoS Pathogens, 2022, 18, e1010562.	2.1	10
4	Proline utilization A controls bacterial pathogenicity by sensing its substrate and cofactors. Communications Biology, 2022, 5, .	2.0	5
5	The Cell–Cell Communication Signal Indole Controls the Physiology and Interspecies Communication of Acinetobacter baumannii. Microbiology Spectrum, 2022, 10, .	1.2	9
6	Antifungal activity of hypocrellin compounds and their synergistic effects with antimicrobial agents against <i>Candida albicans</i> . Microbial Biotechnology, 2021, 14, 430-443.	2.0	18
7	A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying <i>mcr-1</i> -bearing Incl2 plasmids. Nucleic Acids Research, 2021, 49, 3981-3996.	6.5	34
8	A LysR Family Transcriptional Regulator Modulates Burkholderia cenocepacia Biofilm Formation and Protease Production. Applied and Environmental Microbiology, 2021, 87, e0020221.	1.4	14
9	Orchestrated actin nucleation by the Candida albicans polarisome complex enables filamentous growth. Journal of Biological Chemistry, 2020, 295, 14840-14854.	1.6	16
10	Anthranilic acid from <i>Ralstonia solanacearum</i> plays dual roles in intraspecies signalling and inter-kingdom communication. ISME Journal, 2020, 14, 2248-2260.	4.4	21
11	<i>Ralstonia solanacearum</i> promotes pathogenicity by utilizing <scp>l</scp> â€glutamic acid from host plants. Molecular Plant Pathology, 2020, 21, 1099-1110.	2.0	35
12	Efficacy of Compounds Isolated from Streptomyces olivaceus against the Morphogenesis and Virulence of Candida albicans. Marine Drugs, 2019, 17, 442.	2.2	10
13	Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. Npj Biofilms and Microbiomes, 2019, 5, 1.	2.9	60
14	Inhibition of Yeast-to-Hypha Transition and Virulence of <i>Candida albicans</i> by 2-Alkylaminoquinoline Derivatives. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	22
15	Disruption of Quorum Sensing and Virulence in <i>Burkholderia cenocepacia</i> by a Structural Analogue of the <i>cis</i> -2-Dodecenoic Acid Signal. Applied and Environmental Microbiology, 2019, 85, .	1.4	27
16	<i>Xanthomonas campestris</i> Promotes Diffusible Signal Factor Biosynthesis and Pathogenicity by Utilizing Glucose and Sucrose from Host Plants. Molecular Plant-Microbe Interactions, 2019, 32, 157-166.	1.4	12
17	Mycophenolic Acid as a Promising Fungal Dimorphism Inhibitor to Control Sugar Cane Disease Caused by <i>Sporisorium scitamineum</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 112-119.	2.4	7
18	Cobalt-Catalyzed Selective Functionalization of Aniline Derivatives with Hexafluoroisopropanol. Organic Letters, 2019, 21, 218-222.	2.4	17

YINYUE DENG

#	Article	IF	CITATIONS
19	A novel twoâ€component system modulates quorum sensing and pathogenicity in <i>Burkholderia cenocepacia</i> . Molecular Microbiology, 2018, 108, 32-44.	1.2	30
20	(1â€aryloxyâ€2â€hydroxypropyl)â€phenylpiperazine derivatives suppress <i>Candida albicans</i> virulence by interfering with morphological transition. Microbial Biotechnology, 2018, 11, 1080-1089.	2.0	11
21	Identification of Cyclic Dipeptides from Escherichia coli as New Antimicrobial Agents against Ralstonia Solanacearum. Molecules, 2018, 23, 214.	1.7	17
22	<i>Burkholderia cenocepacia</i> integrates <i>cis</i> -2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13006-13011.	3.3	54
23	Modulation of Inter-kingdom Communication by PhcBSR Quorum Sensing System in Ralstonia solanacearum Phylotype I Strain GMI1000. Frontiers in Microbiology, 2017, 8, 1172.	1.5	13
24	Cytoglobosins H and I, New Antiproliferative Cytochalasans from Deep-Sea-Derived Fungus Chaetomium globosum. Marine Drugs, 2016, 14, 233.	2.2	29
25	Genomic Analysis of Phylotype I Strain EP1 Reveals Substantial Divergence from Other Strains in the Ralstonia solanacearum Species Complex. Frontiers in Microbiology, 2016, 7, 1719.	1.5	39
26	A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling. Journal of Biological Chemistry, 2016, 291, 16112-16123.	1.6	40
27	A Sfp-type phosphopantetheinyl transferase ZmsO is essential for zeamines production and the virulence of Dickeya zeae. European Journal of Plant Pathology, 2016, 146, 937-948.	0.8	1
28	Diffusible signal factor family signals provide a fitness advantage to <i>Xanthomonas campestris</i> pv. <i>campestris</i> in interspecies competition. Environmental Microbiology, 2016, 18, 1534-1545.	1.8	30
29	Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 2015, 5, 8784.	1.6	99
30	The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris. Applied and Environmental Microbiology, 2015, 81, 2861-2868.	1.4	33
31	Fenpropathrin Biodegradation Pathway in <i>Bacillus</i> sp. DG-02 and Its Potential for Bioremediation of Pyrethroid-Contaminated Soils. Journal of Agricultural and Food Chemistry, 2014, 62, 2147-2157.	2.4	108
32	Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens. BMC Microbiology, 2014, 14, 51.	1.3	67
33	Cis-2-dodecenoic acid quorum sensing system modulates N-acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia. BMC Microbiology, 2013, 13, 148.	1.3	33
34	Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresource Technology, 2013, 132, 16-23.	4.8	124
35	A cell-cell communication signal integrates quorum sensing and stress response. Nature Chemical Biology, 2013, 9, 339-343.	3.9	354
36	Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS. BMC Microbiology, 2013, 13, 231.	1.3	46

YINYUE DENG

#	Article	IF	CITATIONS
37	Pseudomonas aeruginosa Cytotoxicity Is Attenuated at High Cell Density and Associated with the Accumulation of Phenylacetic Acid. PLoS ONE, 2013, 8, e60187.	1.1	24
38	Monooxygenase, a Novel Beta-Cypermethrin Degrading Enzyme from Streptomyces sp. PLoS ONE, 2013, 8, e75450.	1.1	30
39	Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15479-15484.	3.3	145
40	The AHL- and BDSF-Dependent Quorum Sensing Systems Control Specific and Overlapping Sets of Genes in Burkholderia cenocepacia H111. PLoS ONE, 2012, 7, e49966.	1.1	70
41	ARF-TSS: an alternative method for identification of transcription start site in bacteria. BioTechniques, 2012, 52, 1-3.	0.8	17
42	Degradation of 3-Phenoxybenzoic Acid by a Bacillus sp. PLoS ONE, 2012, 7, e50456.	1.1	47
43	Listening to a New Language: DSF-Based Quorum Sensing in Gram-Negative Bacteria. Chemical Reviews, 2011, 111, 160-173.	23.0	214
44	Structural and Functional Characterization of Diffusible Signal Factor Family Quorum-Sensing Signals Produced by Members of the <i>Burkholderia cepacia</i> Complex. Applied and Environmental Microbiology, 2010, 76, 4675-4683.	1.4	110
45	Differential Modulation of <i>Burkholderia cenocepacia </i> Virulence and Energy Metabolism by the Quorum-Sensing Signal BDSF and Its Synthase. Journal of Bacteriology, 2009, 191, 7270-7278.	1.0	53
46	A novel DSF-like signal from <i>Burkholderia cenocepacia</i> interferes with <i>Candida albicans</i> morphological transition. ISME Journal, 2008, 2, 27-36.	4.4	250
47	Characterization of melanin produced by a wild-type strain of Bacillus cereus. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2007, 2, 26-29.	0.2	30