
Yoonsu Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and Applications. Chemical Reviews, 2017, 117, 9247-9301.	47.7	1,707
2	Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading to Robust C–H Amination with a New Type of Amidating Reagent. Journal of the American Chemical Society, 2015, 137, 4534-4542.	13.7	371
3	Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science, 2018, 359, 1016-1021.	12.6	287
4	Mechanistic Studies of the Rhodium-Catalyzed Direct C–H Amination Reaction Using Azides as the Nitrogen Source. Journal of the American Chemical Society, 2014, 136, 2492-2502.	13.7	256
5	Iridium-Catalyzed Enantioselective C(sp ³)–H Amidation Controlled by Attractive Noncovalent Interactions. Journal of the American Chemical Society, 2019, 141, 7194-7201.	13.7	156
6	Rh(III)-Catalyzed Traceless Coupling of Quinoline <i>N</i> -Oxides with Internal Diarylalkynes. Journal of Organic Chemistry, 2014, 79, 9899-9906.	3.2	155
7	Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nature Catalysis, 2019, 2, 219-227.	34.4	153
8	Why is the Ir(III)-Mediated Amido Transfer Much Faster Than the Rh(III)-Mediated Reaction? A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2016, 138, 14020-14029.	13.7	144
9	Iridium-catalysed arylation of C–H bonds enabled by oxidatively induced reductive elimination. Nature Chemistry, 2018, 10, 218-224.	13.6	129
10	Study of Sustainability and Scalability in the Cp*Rh(III)-Catalyzed Direct C–H Amidation with 1,4,2-Dioxazol-5-ones. Organic Process Research and Development, 2015, 19, 1024-1029.	2.7	123
11	Regiodivergent Access to Five- and Six-Membered Benzo-Fused Lactams: Ru-Catalyzed Olefin Hydrocarbamoylation. Journal of the American Chemical Society, 2014, 136, 1125-1131.	13.7	85
12	Revisiting Arene C(sp ²)â^'H Amidation by Intramolecular Transfer of Iridium Nitrenoids: Evidence for a Spirocyclization Pathway. Angewandte Chemie - International Edition, 2018, 57, 13565-13569.	13.8	69
13	Mechanismâ€Ðriven Approach To Develop a Mild and Versatile Câ^'H Amidation through Ir ^{III} Catalysis. Chemistry - A European Journal, 2017, 23, 11147-11152.	3.3	65
14	Harnessing Secondary Coordination Sphere Interactions That Enable the Selective Amidation of Benzylic C–H Bonds. Journal of the American Chemical Society, 2019, 141, 15356-15366.	13.7	55
15	Ni-Mediated Generation of "CN―Unit from Formamide and Its Catalysis in the Cyanation Reactions. ACS Catalysis, 2019, 9, 3360-3365.	11.2	46
16	Delineating Physical Organic Parameters in Site-Selective C–H Functionalization of Indoles. ACS Central Science, 2018, 4, 768-775.	11.3	44
17	Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways. ACS Catalysis, 2021, 11, 1351-1360.	11.2	34
18	Discovery of New Benzothiazole-Based Inhibitors of Breakpoint Cluster Region-Abelson Kinase Including the T3151 Mutant, Journal of Medicinal Chemistry, 2013, 56, 3531-3545	6.4	32

Yoonsu Park

#	Article	IF	CITATIONS
19	Mechanism of Rh-Catalyzed Oxidative Cyclizations: Closed versus Open Shell Pathways. Accounts of Chemical Research, 2016, 49, 1263-1270.	15.6	32
20	Quantifying Structural Effects of Amino Acid Ligands in Pd(II)-Catalyzed Enantioselective C–H Functionalization Reactions. Organometallics, 2018, 37, 203-210.	2.3	32
21	Synthesis, Electronic Structure, and Reactivity of a Planar Fourâ€Coordinate, Cobalt–Imido Complex. Angewandte Chemie - International Edition, 2021, 60, 14376-14380.	13.8	31
22	Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nature Chemistry, 2021, 13, 969-976.	13.6	26
23	Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. Journal of the American Chemical Society, 2020, 142, 9518-9524.	13.7	22
24	Revisiting Arene C(sp ²)â^'H Amidation by Intramolecular Transfer of Iridium Nitrenoids: Evidence for a Spirocyclization Pathway. Angewandte Chemie, 2018, 130, 13753-13757.	2.0	18
25	Rhodium-Catalyzed Direct Amination of Arene C-H Bonds Using Azides as the Nitrogen Source. Organic Syntheses, 2014, 91, 52.	1.0	18
26	Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. , 2022, 1, 297-303.		16
27	Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. Jacs Au, 2022, 2, 407-418.	7.9	12
28	Synthesis, Electronic Structure, and Reactivity of a Planar Fourâ€Coordinate, Cobalt–Imido Complex. Angewandte Chemie, 2021, 133, 14497-14501.	2.0	7
29	The Future of Scientific Leadership is Interdisciplinary: The 2019 CAS Future Leaders Share Their Vision.	4.1	0