
Kristina Djanashvili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO ₂ over Cu Nanowire Arrays. Angewandte Chemie - International Edition, 2016, 55, 6680-6684.	7.2	471
2	Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes. Frontiers in Chemistry, 2018, 6, 1.	1.8	358
3	Selective electrochemical reduction of CO ₂ to CO on CuO-derived Cu nanowires. Physical Chemistry Chemical Physics, 2015, 17, 20861-20867.	1.3	159
4	Molecular Recognition of Sialic Acid End Groups by Phenylboronates. Chemistry - A European Journal, 2005, 11, 4010-4018.	1.7	124
5	Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO ₂ over Cu Nanowire Arrays. Angewandte Chemie, 2016, 128, 6792-6796.	1.6	112
6	Lanthanide Chelates Containing Pyridine Units with Potential Application as Contrast Agents in Magnetic Resonance Imaging. Chemistry - A European Journal, 2004, 10, 3579-3590.	1.7	107
7	5-Hydroxymethylfurfural Synthesis from Hexoses Is Autocatalytic. ACS Catalysis, 2013, 3, 760-763.	5.5	90
8	Pyridine- and Phosphonate-Containing Ligands for Stable Ln Complexation. Extremely Fast Water Exchange on the GdIIIChelates. Inorganic Chemistry, 2006, 45, 8719-8728.	1.9	87
9	MRI Visualization of Melanoma Cells by Targeting Overexpressed Sialic Acid with a Gd ^{III} â€dotaâ€enâ€pba Imaging Reporter. Angewandte Chemie - International Edition, 2013, 52, 1161-1164.	7.2	81
10	Pt/Al ₂ O ₃ Catalyzed 1,3â€Propanediol Formation from Glycerol using Tungsten Additives. ChemCatChem, 2013, 5, 497-505.	1.8	76
11	The chemical consequences of the gradual decrease of the ionic radius along the Ln-series. Coordination Chemistry Reviews, 2020, 406, 213146.	9.5	64
12	Tuning selectivity of Pt/CaCO3 in glycerol hydrogenolysis — A Design of Experiments approach. Catalysis Communications, 2011, 13, 1-5.	1.6	62
13	Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T ₂ -weighted MR, X-ray tomography and photoluminescence. Nanoscale, 2014, 6, 555-564.	2.8	59
14	Lanthanide(III) Complexes of Phosphorus Acid Analogues of H ₄ DOTA as Model Compounds for the Evaluation of the Secondâ€ s phere Hydration. European Journal of Inorganic Chemistry, 2009, 2009, 119-136.	1.0	55
15	Lanthanide Loaded Zeolites, Clays, and Mesoporous Silica Materials as MRI Probes. European Journal of Inorganic Chemistry, 2012, 2012, 1961-1974.	1.0	50
16	How to determine the number of inner-sphere water molecules in Lanthanide(III) complexes by170 NMR spectroscopy. A technical note. Contrast Media and Molecular Imaging, 2007, 2, 67-71.	0.4	48
17	The structure of the lanthanide aquo ions in solution as studied by 170 NMR spectroscopy and DFT calculations. Dalton Transactions, 2008, , 602-607.	1.6	46
18	The highest water exchange rate ever measured for a Gd(iii) chelate. Chemical Communications, 2005, , 4729.	2.2	39

Kristina Djanashvili

#	Article	IF	CITATIONS
19	170 NMR and Density Functional Theory Study of the Dynamics of the Carboxylate Groups in DOTA Complexes of Lanthanides in Aqueous Solution. Inorganic Chemistry, 2012, 51, 170-178.	1.9	35
20	Molecular Recognition of Sialic Acid by Lanthanide(III) Complexes through Cooperative Two-Site Binding. Inorganic Chemistry, 2010, 49, 4212-4223.	1.9	33
21	Combined epimerisation and acylation: Meerwein–Ponndorf–Verley–Oppenauer catalysts in action. Organic and Biomolecular Chemistry, 2005, 3, 483-489.	1.5	31
22	Phenylboronate160Tb complexes for molecular recognition of glycoproteins expressed on tumor cells. Contrast Media and Molecular Imaging, 2007, 2, 35-41.	0.4	30
23	Deuteration study to elucidate hydrogenolysis of benzylic alcohols over supported palladium catalysts. Journal of Catalysis, 2007, 246, 344-350.	3.1	30
24	Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate. Bioorganic and Medicinal Chemistry, 2011, 19, 1123-1130.	1.4	29
25	Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its <i>cis</i> â€Diol and Carboxylate Functions. European Journal of Organic Chemistry, 2010, 2010, 3237-3248.	1.2	28
26	Synthesis, characterisation and catalytic performance of a mesoporous tungsten silicate: W-TUD-1. Applied Catalysis A: General, 2013, 468, 150-159.	2.2	25
27	Al(OH) ₃ facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles. Chemical Communications, 2015, 51, 9332-9335.	2.2	21
28	B-TUD-1: a versatile mesoporous catalyst. RSC Advances, 2013, 3, 21524.	1.7	20
29	Nuclear Waste and Biocatalysis: A Sustainable Liaison?. ACS Catalysis, 2020, 10, 14195-14200.	5.5	20
30	Prototropic Exchange Governs <i>T</i> ₁ and <i>T</i> ₂ Relaxivities of a Potential MRI Contrast Agent Nanozeolite Gdâ^'LTL with a High pH Responsiveness. Journal of Physical Chemistry C, 2015, 119, 5080-5089.	1.5	18
31	Polysaccharide-Based Theranostic Systems for Combined Imaging and Cancer Therapy: Recent Advances and Challenges. ACS Biomaterials Science and Engineering, 2022, 8, 2281-2306.	2.6	17
32	Nanozeolite‣TL with Gd ^{III} Deposited in the Large and Eu ^{III} in the Small Cavities as a Magnetic Resonance Optical Imaging Probe. Chemistry - A European Journal, 2014, 20, 3358-3364.	1.7	15
33	Synthesis, characterization and performance of bifunctional catalysts for the synthesis of menthol from citronellal. RSC Advances, 2017, 7, 12041-12053.	1.7	15
34	Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications. ACS Applied Materials & Interfaces, 2017, 9, 23458-23465.	4.0	14
35	The Gd ³⁺ complex of 1,4,7,10â€ŧetraazacyclododecaneâ€1,4,7,10â€ŧetraacetic acid mono(<i>p</i> â€isothiocyanatoanilide) conjugated to inulin: a potential stable macromolecular contrast agent for MRI. Contrast Media and Molecular Imaging, 2011, 6, 482-491.	0.4	13
36	Nanoparticles of lanthanide oxysulfate/oxysulfide for improved oxygen storage/release. Dalton Transactions, 2016, 45, 14019-14022.	1.6	13

#	Article	IF	CITATIONS
37	Lightâ€Harvesting Antennae using the Host–Guest Chemistry of Mesoporous Organosilica. ChemPhotoChem, 2018, 2, 196-206.	1.5	12
38	31P NMR study of the valence stability of tin in its 1-hydroxyethylene-diphosphonate (HEDP) and N,N′,N′-trimethylenephosphonate-polyethyleneimine (PEI-MP) complexes. Polyhedron, 2008, 27, 1779-1786	5. ^{1.0}	11
39	Aldol reactions mediated by a tetrahedral boronate. Chemical Communications, 2013, 49, 361-363.	2.2	11
40	Tumor Targeting via Sialic Acid: [68Ga]DOTA-en-pba as a New Tool for Molecular Imaging of Cancer with PET. Molecular Imaging and Biology, 2018, 20, 798-807.	1.3	10
41	Molecular architecture control in synthesis of spherical Ln-containing nanoparticles. RSC Advances, 2015, 5, 69861-69869.	1.7	9
42	Glycoconjugate probes and targets for molecular imaging using magnetic resonance. Future Medicinal Chemistry, 2010, 2, 409-425.	1.1	8
43	Microwaveâ€Assisted Seeded Growth of Lanthanideâ€Based Nanoparticles for Imaging and Therapy. Chemistry - A European Journal, 2012, 18, 8004-8007.	1.7	8
44	Mesoscopic FRET Antenna Materials by Selfâ€Assembling Iridium(III) Complexes and BODIPY Dyes. Chemistry - A European Journal, 2018, 24, 11992-11999.	1.7	7
45	Process Intensification of Mesoporous Material's Synthesis by Microwave-Assisted Surfactant Removal. ACS Sustainable Chemistry and Engineering, 2020, 8, 16814-16822.	3.2	5
46	Towards Enhanced MRI Performance of Tumor-Specific Dimeric Phenylboronic Contrast Agents. Molecules, 2021, 26, 1730.	1.7	5
47	Potential of MRI in Radiotherapy Mediated by Small Conjugates and Nanosystems. Inorganics, 2019, 7, 59.	1.2	4
48	Solid-phase synthesis and evaluation of tumour-targeting phenylboronate-based MRI contrast agents. Organic and Biomolecular Chemistry, 2020, 18, 7899-7906.	1.5	4
49	Tetrahedral boronates as basic catalysts in the aldol reaction. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2015, 70, 587-595.	0.3	3
50	An Introduction to MRI Contrast Agents. , 2016, , .		2
51	Fate of Organic Functionalities Conjugated to Theranostic Nanoparticles upon Their Activation. Bioconjugate Chemistry, 2016, 27, 446-456.	1.8	2
52	On the Versatility of Nanozeolite Linde Type L for Biomedical Applications: Zirconium-89 Radiolabeling and In Vivo Positron Emission Tomography Study. ACS Applied Materials & Interfaces, 2022, 14, 32788-32798.	4.0	2
53	NMR study of the synthesis of170-enriched acetic acid by hydrolysis of acetic anhydride with170-enriched water. Magnetic Resonance in Chemistry, 2003, 41, 959-961.	1.1	1
54	Supramolecular "Leeks―of a Fluorinated Hybrid Amphiphile That Self-Assembles into a Disordered Columnar Phase. Journal of Physical Chemistry B, 2013, 117, 2820-2826.	1.2	1

#	Article	IF	CITATIONS
55	Imaging With Lanthanides. , 2017, , 261-293.		Ο
56	The search for panchromatic light-harvesting systems: Ternary and binary antennae based on self-organised materials. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112872.	2.0	0