
## Davide Sabbadin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903870/publications.pdf Version: 2024-02-01



DAVIDE SARRADIN

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Computationally driven discovery of SARS-CoV-2 M <sup>pro</sup> inhibitors: from design to experimental validation. Chemical Science, 2022, 13, 3674-3687.                                                                                               | 7.4 | 21        |
| 2  | From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design.<br>Molecular Pharmaceutics, 2019, 16, 4282-4291.                                                                                                              | 4.6 | 81        |
| 3  | Defining and Exploiting Hypersensitivity Hotspots to Facilitate Abscisic Acid Agonist Optimization. ACS<br>Chemical Biology, 2019, 14, 332-336.                                                                                                          | 3.4 | 19        |
| 4  | Insecticidal spider toxins are high affinity positive allosteric modulators of the nicotinic acetylcholine receptor. FEBS Letters, 2019, 593, 1336-1350.                                                                                                 | 2.8 | 23        |
| 5  | Shape-Based Generative Modeling for de Novo Drug Design. Journal of Chemical Information and Modeling, 2019, 59, 1205-1214.                                                                                                                              | 5.4 | 145       |
| 6  | Supervised Molecular Dynamics (SuMD) Approaches in Drug Design. Methods in Molecular Biology,<br>2018, 1824, 287-298.                                                                                                                                    | 0.9 | 18        |
| 7  | New Trends in Inspecting GPCRâ€ligand Recognition Process: the Contribution of the Molecular<br>Modeling Section (MMS) at the University of Padova. Molecular Informatics, 2016, 35, 440-448.                                                            | 2.5 | 3         |
| 8  | Deciphering the Complexity of Ligand–Protein Recognition Pathways Using Supervised Molecular<br>Dynamics (SuMD) Simulations. Journal of Chemical Information and Modeling, 2016, 56, 687-705.                                                            | 5.4 | 88        |
| 9  | Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. Journal of Computer-Aided Molecular Design, 2015, 29, 737-756.                                                                                               | 2.9 | 42        |
| 10 | Exploring the recognition pathway at the human A <sub>2A</sub> adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics simulations. MedChemComm, 2015, 6, 1081-1085.                                                  | 3.4 | 36        |
| 11 | Advances in Computational Techniques to Study GPCR–Ligand Recognition. Trends in Pharmacological<br>Sciences, 2015, 36, 878-890.                                                                                                                         | 8.7 | 40        |
| 12 | The xylanase inhibitor <scp>TAXIâ€III</scp> counteracts the necrotic activity of a<br><i><scp>F</scp>usarium graminearum</i> xylanase <i>in vitro</i> and in durum wheat transgenic<br>plants. Molecular Plant Pathology, 2015, 16, 583-592.             | 4.2 | 22        |
| 13 | Carboxylation-dependent conformational changes of human osteocalcin. Frontiers in Bioscience -<br>Landmark, 2014, 19, 1105.                                                                                                                              | 3.0 | 12        |
| 14 | Bridging Molecular Docking to Membrane Molecular Dynamics To Investigate GPCR–Ligand<br>Recognition: The Human A <sub>2A</sub> Adenosine Receptor as a Key Study. Journal of Chemical<br>Information and Modeling, 2014, 54, 169-183.                    | 5.4 | 59        |
| 15 | Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges.<br>Structure, 2014, 22, 1120-1139.                                                                                                                         | 3.3 | 149       |
| 16 | Perturbation of Fluid Dynamics Properties of Water Molecules during G Protein-Coupled<br>Receptor–Ligand Recognition: The Human A <sub>2A</sub> Adenosine Receptor as a Key Study. Journal<br>of Chemical Information and Modeling, 2014, 54, 2846-2855. | 5.4 | 24        |
| 17 | Supervised Molecular Dynamics (SuMD) as a Helpful Tool To Depict GPCR–Ligand Recognition Pathway<br>in a Nanosecond Time Scale. Journal of Chemical Information and Modeling, 2014, 54, 372-376.                                                         | 5.4 | 135       |
| 18 | The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO Journal, 2013, 32, 2362-2376.                                                                                                          | 7.8 | 408       |

DAVIDE SABBADIN

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | MMsDusty: an Alternative InChlâ€Based Tool to Minimize Chemical Redundancy. Molecular Informatics, 2013, 32, 681-684.                                                                                                                                                                           | 2.5 | 2         |
| 20 | Implementing the "Best Template Searching―tool into Adenosiland platform. In Silico Pharmacology,<br>2013, 1, 25.                                                                                                                                                                               | 3.3 | 10        |
| 21 | New insight into adenosine receptors selectivity derived from a novel series of<br>[5-substituted-4-phenyl-1,3-thiazol-2-yl] benzamides and furamides. European Journal of Medicinal<br>Chemistry, 2013, 63, 924-934.                                                                           | 5.5 | 30        |
| 22 | Adenosiland: Walking through adenosine receptors landscape. European Journal of Medicinal<br>Chemistry, 2012, 58, 248-257.                                                                                                                                                                      | 5.5 | 29        |
| 23 | Exploring the Directionality of 5-Substitutions in a New Series of<br>5-Alkylaminopyrazolo[4,3- <i>e</i> ]1,2,4-triazolo[1,5- <i>c</i> ]pyrimidine as a Strategy To Design Novel<br>Human A <sub>3</sub> Adenosine Receptor Antagonists Journal of Medicinal Chemistry, 2012, 55,<br>9654-9668. | 6.4 | 17        |
| 24 | 3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors:<br>Molecular modeling and pharmacological studies. European Journal of Medicinal Chemistry, 2012, 54,<br>470-482.                                                                          | 5.5 | 31        |
| 25 | Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization.<br>Furopean Journal of Medicinal Chemistry, 2011, 46, 3519-3525.                                                                                                                                 | 5.5 | 15        |