
Naihe Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903617/publications.pdf Version: 2024-02-01

NATHE LINC

#	Article	IF	CITATIONS
1	Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nature Cell Biology, 2018, 20, 979-989.	10.3	248
2	Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nature Genetics, 2019, 51, 728-738.	21.4	231
3	Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell, 2018, 23, 586-598.e8.	11.1	215
4	The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. ELife, 2014, 3, .	6.0	213
5	Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nature Protocols, 2017, 12, 566-580.	12.0	213
6	Spatial Transcriptome for the Molecular Annotation of Lineage Fates and Cell Identity in Mid-gastrula Mouse Embryo. Developmental Cell, 2016, 36, 681-697.	7.0	201
7	Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature, 2019, 572, 528-532.	27.8	163
8	Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development (Cambridge), 2010, 137, 2095-2105.	2.5	115
9	Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development. Cell Reports, 2019, 26, 2593-2607.e3.	6.4	102
10	Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Research, 2016, 26, 1099-1111.	12.0	101
11	Different Transcription Factors Regulate nestin Gene Expression during P19 Cell Neural Differentiation and Central Nervous System Development. Journal of Biological Chemistry, 2009, 284, 8160-8173.	3.4	85
12	ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer's Disease in Mouse Models. Stem Cell Reports, 2015, 5, 776-790.	4.8	75
13	Dual Roles of Histone H3 Lysine 9 Acetylation in Human Embryonic Stem Cell Pluripotency and Neural Differentiation. Journal of Biological Chemistry, 2015, 290, 2508-2520.	3.4	68
14	TRPC6 specifically interacts with APP to inhibit its cleavage by Î ³ -secretase and reduce AÎ ² production. Nature Communications, 2015, 6, 8876.	12.8	60
15	Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Research, 2021, 31, 526-541.	12.0	53
16	Mouse knockout models reveal largely dispensable but context-dependent functions of lncRNAs during development. Journal of Molecular Cell Biology, 2018, 10, 175-178.	3.3	48
17	Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation. Nature Cell Biology, 2018, 20, 1278-1289.	10.3	48
18	A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. Cell Reports, 2019, 27, 1567-1578.e5.	6.4	45

NAIHE JING

#	Article	IF	CITATIONS
19	Inhibition of Transforming Growth Factor β (TGF-β) Signaling can Substitute for Oct4 Protein in Reprogramming and Maintain Pluripotency. Journal of Biological Chemistry, 2015, 290, 4500-4511.	3.4	42
20	A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nature Communications, 2019, 10, 4827.	12.8	40
21	VGLL4 plays a critical role in heart valve development and homeostasis. PLoS Genetics, 2019, 15, e1007977.	3.5	40
22	M-CSF, IL-6, and TGF-β promote generation of a new subset of tissue repair macrophage for traumatic brain injury recovery. Science Advances, 2021, 7, .	10.3	40
23	Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Reports, 2020, 31, 107521.	6.4	37
24	Human Neural Stem Cells Reinforce Hippocampal Synaptic Network and Rescue Cognitive Deficits in a Mouse Model of Alzheimer's Disease. Stem Cell Reports, 2019, 13, 1022-1037.	4.8	36
25	CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Research, 2017, 27, 815-829.	12.0	35
26	Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Systems, 2020, 11, 625-639.e13.	6.2	31
27	Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development. Annual Review of Genomics and Human Genetics, 2020, 21, 163-181.	6.2	31
28	Inference of differentiation time for single cell transcriptomes using cell population reference data. Nature Communications, 2017, 8, 1856.	12.8	30
29	Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells. Journal of Biological Chemistry, 2017, 292, 19590-19604.	3.4	29
30	The Zinc Finger Transcription Factor Ovol2 Acts Downstream of the Bone Morphogenetic Protein Pathway to Regulate the Cell Fate Decision between Neuroectoderm and Mesendoderm*. Journal of Biological Chemistry, 2013, 288, 6166-6177.	3.4	28
31	Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta. ELife, 2017, 6, .	6.0	27
32	TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochimica Et Biophysica Sinica, 2018, 50, 68-73.	2.0	27
33	Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages. Cell Research, 2018, 28, 593-596.	12.0	26
34	Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nature Communications, 2015, 6, 6830.	12.8	25
35	Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. Journal of Molecular Cell Biology, 2015, 7, 455-465.	3.3	24
36	Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling. Development (Cambridge), 2015, 142, 465-76.	2.5	24

NAIHE JING

#	Article	IF	CITATIONS
37	Intrinsic regulations in neural fate commitment. Development Growth and Differentiation, 2015, 57, 109-120.	1.5	24
38	The promise of stem cells in the therapy of Alzheimer's disease. Translational Neurodegeneration, 2015, 4, 8.	8.0	21
39	Base-Editing-Mediated R17H Substitution in Histone H3 Reveals Methylation-Dependent Regulation of Yap Signaling and Early Mouse Embryo Development. Cell Reports, 2019, 26, 302-312.e4.	6.4	21
40	Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion. Stem Cell Reports, 2021, 16, 534-547.	4.8	21
41	AF9 promotes hESC neural differentiation through recruiting TET2 to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discovery, 2015, 1, 15017.	6.7	20
42	Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Reports, 2017, 18, 933-946.	6.4	19
43	BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer's disease pathology. IScience, 2021, 24, 102942.	4.1	19
44	Dynamics of Wnt activity on the acquisition of ectoderm potency in epiblast stem cells. Development (Cambridge), 2019, 146, .	2.5	18
45	Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells. Stem Cell Reports, 2018, 11, 43-57.	4.8	16
46	Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Research, 2019, 29, 911-926.	12.0	16
47	Hormones induce the formation of luminal-derived basal cells in the mammary gland. Cell Research, 2019, 29, 206-220.	12.0	14
48	Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. Cell Research, 2020, 30, 408-420.	12.0	14
49	Dynamic Heterogeneity of Brachyury in Mouse Epiblast Stem Cells Mediates Distinct Response to Extrinsic Bone Morphogenetic Protein (BMP) Signaling. Journal of Biological Chemistry, 2016, 291, 15212-15225.	3.4	13
50	Epigenetic regulation of early neural fate commitment. Cellular and Molecular Life Sciences, 2016, 73, 1399-1411.	5.4	13
51	Abnormal Paraventricular Nucleus of Hypothalamus and Growth Retardation Associated with Loss of Nuclear Receptor Gene COUP-TFII. Scientific Reports, 2017, 7, 5282.	3.3	13
52	SOX21 Ensures Rostral Forebrain Identity by Suppression of WNT8B during Neural Regionalization of Human Embryonic Stem Cells. Stem Cell Reports, 2019, 13, 1038-1052.	4.8	13
53	Probing the therapeutic potential of TRPC6 for Alzheimer's disease in live neurons from patient-specific iPSCs. Journal of Molecular Cell Biology, 2020, 12, 807-816.	3.3	13
54	Derivation of Haploid Neurons from Mouse Androgenetic Haploid Embryonic Stem Cells. Neuroscience Bulletin, 2017, 33, 361-364.	2.9	11

NAIHE JING

#	Article	IF	CITATIONS
55	Regulation of zebrafish dorsoventral patterning by phase separation of RNA-binding protein Rbm14. Cell Discovery, 2019, 5, 37.	6.7	10
56	Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. IScience, 2021, 24, 103207.	4.1	9
57	TGFÎ ² signaling hyperactivation-induced tumorigenicity during the derivation of neural progenitors from mouse ESCs. Journal of Molecular Cell Biology, 2018, 10, 216-228.	3.3	8
58	Mitochondrial replacement in macaque monkey offspring by first polar body transfer. Cell Research, 2021, 31, 233-236.	12.0	8
59	Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment. Genomics Data, 2015, 5, 375-377.	1.3	7
60	Mouse gastrulation: Attributes of transcription factor regulatory network for epiblast patterning. Development Growth and Differentiation, 2018, 60, 463-472.	1.5	6
61	A gene regulatory network anchored by LIM homeobox 1 for embryonic head development. Genesis, 2018, 56, e23246.	1.6	6
62	SOX1 Is Required for the Specification of Rostral Hindbrain Neural Progenitor Cells from Human Embryonic Stem Cells. IScience, 2020, 23, 101475.	4.1	6
63	C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors. Stem Cell Reports, 2020, 14, 614-630.	4.8	6
64	The genome-wide molecular regulation of mouse gastrulation embryo. Science China Life Sciences, 2017, 60, 363-369.	4.9	5
65	Lineage specification of early embryos and embryonic stem cells at the dawn of enabling technologies. National Science Review, 2017, 4, 533-542.	9.5	5
66	BMP signaling pathway and spinal cord development. Frontiers in Biology, 2012, 7, 24-29.	0.7	4
67	Embryonic vascular establishment requires protein C receptor-expressing endothelial progenitors. Development (Cambridge), 2022, 149, .	2.5	4
68	Genome-wide analysis of histone acetylation dynamics during mouse embryonic stem cell neural differentiation. Genomics Data, 2015, 5, 15-16.	1.3	3
69	Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development. Genes, 2011, 2, 298-312.	2.4	2
70	Protocol for generating human induced neural progenitor cells from immobilized adult peripheral blood. STAR Protocols, 2021, 2, 100346.	1.2	2
71	Wholemount in situ Hybridization for Spatial-temporal Visualization of Gene Expression in Early Post-implantation Mouse Embryos. Bio-protocol, 2021, 11, e4229.	0.4	2
72	The long-term survival and functional maturation of human iNPC-derived neurons in the basal forebrain of cynomolgus monkeys. , 2022, 1, 196-206.		2

#	Article	IF	CITATIONS
73	Generation of human induced pluripotent stem cell line FDCHDPi001-A from a Chinese Han Tourette's syndrome patient. Stem Cell Research, 2021, 52, 102227.	0.7	1
74	SUN-050 The Evolutionarily Conserved Function of COUP-TF Genes in the Differentiation of Photoreceptor Cells in the Retina. Journal of the Endocrine Society, 2019, 3, .	0.2	0