List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903123/publications.pdf Version: 2024-02-01

MADKIIS PADD

#	Article	IF	CITATIONS
1	Polar mesosphere summer echoes (PMSE): Review of observations and current understanding. Atmospheric Chemistry and Physics, 2004, 4, 2601-2633.	4.9	337
2	Modeling the microphysics of mesospheric ice particles: Assessment of current capabilities and basic sensitivities. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 715-744.	1.6	261
3	Small-scale temperature variations in the vicinity of NLC: Experimental and model results. Journal of Geophysical Research, 2002, 107, AAC 11-1.	3.3	164
4	The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity Wave Propagation and Effects from Their Sources throughout the Lower and Middle Atmosphere. Bulletin of the American Meteorological Society, 2016, 97, 425-453.	3.3	148
5	Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes. Journal of Geophysical Research, 2002, 107, ACL 9-1.	3.3	116
6	On the nature of PMSE: Electron diffusion in the vicinity of charged particles revisited. Journal of Geophysical Research, 2003, 108, .	3.3	114
7	ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO. Bulletin of the American Meteorological Society, 2017, 98, 271-288.	3.3	107
8	Modelling of particle charging in the polar summer mesosphere: Part 1—General results. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 759-770.	1.6	96
9	Observations of positively charged nanoparticles in the nighttime polar mesosphere. Geophysical Research Letters, 2005, 32, .	4.0	94
10	Global and temporal distribution of meteoric smoke: A twoâ€dimensional simulation study. Journal of Geophysical Research, 2008, 113, .	3.3	92
11	Cleaner burning aviation fuels can reduce contrail cloudiness. Communications Earth & Environment, 2021, 2, .	6.8	92
12	MAARSY: The new MST radar on AndÃ,ya—System description and first results. Radio Science, 2012, 47, .	1.6	74
13	Distribution of meteoric smoke – sensitivity to microphysical properties and atmospheric conditions. Atmospheric Chemistry and Physics, 2006, 6, 4415-4426.	4.9	71
14	News from the Lower Ionosphere: A Review of Recent Developments. Surveys in Geophysics, 2009, 30, 525-559.	4.6	68
15	High Rossby-wave activity in austral winter 2002: Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophysical Research Letters, 2004, 31, .	4.0	66
16	Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes. Geophysical Research Letters, 1998, 25, 893-896.	4.0	63
17	Gravity-wave influences on Arctic mesospheric clouds as determined by a Rayleigh lidar at Sondrestrom, Greenland. Journal of Geophysical Research, 2003, 108, .	3.3	63
18	Absolute density measurements in the middle atmosphere. Annales Geophysicae, 2001, 19, 571-580.	1.6	62

#	Article	IF	CITATIONS
19	Polar mesospheric clouds formed from space shuttle exhaust. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	62
20	Trends of mesospheric gravity waves at northern middle latitudes during summer. Journal of Geophysical Research, 2011, 116, .	3.3	62
21	Turbulence measurements and implications for gravity wave dissipation during the MaCWAVE/MIDAS rocket program. Geophysical Research Letters, 2004, 31, .	4.0	60
22	The science case for the EISCAT_3D radar. Progress in Earth and Planetary Science, 2015, 2, .	3.0	60
23	Electron temperature control of PMSE. Geophysical Research Letters, 2000, 27, 3285-3288.	4.0	59
24	Meteoric smoke particles: Evidence from rocket and radar techniques. Advances in Space Research, 2007, 40, 809-817.	2.6	58
25	Polar mesosphere summer echoes (PMSE) studied at Bragg wavelengths of 2.8m, 67cm, and 16cm. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 947-961.	1.6	58
26	First continuous temperature measurements within polar mesosphere summer echoes. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 453-463.	1.6	58
27	Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophysical Research Letters, 2004, 31, .	4.0	55
28	The MaCWAVE/MIDAS rocket and ground-based measurements of polar summer dynamics: Overview and mean state structure. Geophysical Research Letters, 2004, 31, .	4.0	55
29	Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements. Atmospheric Measurement Techniques, 2015, 8, 4645-4655.	3.1	54
30	Meteor smoke particle properties derived from Arecibo incoherent scatter radar observations. Geophysical Research Letters, 2007, 34, .	4.0	52
31	Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign. Annales Geophysicae, 2009, 27, 1213-1232.	1.6	51
32	Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophysical Research Letters, 2015, 42, 9488-9494.	4.0	51
33	First tomographic observations of gravity waves by the infrared limb imager GLORIA. Atmospheric Chemistry and Physics, 2017, 17, 14937-14953.	4.9	51
34	Horizontal propagation of largeâ€amplitude mountain waves into the polar night jet. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1423-1436.	3.3	49
35	The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes. Atmospheric Chemistry and Physics, 2006, 6, 13-24.	4.9	48
36	Modelling of positively charged aerosols in the polar summer mesopause region. Earth, Planets and Space, 1999, 51, 799-807.	2.5	45

#	Article	IF	CITATIONS
37	Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system. Journal of Geophysical Research, 2010, 115, .	3.3	45
38	Airborne Wind Lidar Measurements of Vertical and Horizontal Winds for the Investigation of Orographically Induced Gravity Waves. Journal of Atmospheric and Oceanic Technology, 2017, 34, 1371-1386.	1.3	45
39	PMSE dependence on aerosol charge number density and aerosol size. Journal of Geophysical Research, 2003, 108, .	3.3	44
40	Dregion electron number density limits for the existence of polar mesosphere summer echoes. Journal of Geophysical Research, 2002, 107, ACH 2-1.	3.3	42
41	On the efficiency of rocket-borne particle detection in the mesosphere. Atmospheric Chemistry and Physics, 2007, 7, 3701-3711.	4.9	41
42	Reduced meteoric smoke particle density at the summer pole – Implications for mesospheric ice particle nucleation. Advances in Space Research, 2008, 41, 41-49.	2.6	41
43	Measurement of positively and negatively charged particles inside PMSE during MIDAS SOLSTICE 2001. Journal of Geophysical Research, 2003, 108, .	3.3	40
44	Relations between small scale electron number density fluctuations, radar backscatter, and charged aerosol particles. Journal of Geophysical Research, 2003, 108, .	3.3	39
45	On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution. Atmospheric Chemistry and Physics, 2010, 10, 6661-6668.	4.9	39
46	Gravity wave momentum fluxes in the MLT—Part II: Meteor radar investigations at high and midlatitudes in comparison with modeling studies. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 911-920.	1.6	39
47	In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition. Annales Geophysicae, 2012, 30, 1661-1673.	1.6	39
48	Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 477-485.	1.6	37
49	Composite analysis of the temporal development of waves in the polar MLT region during stratospheric warmings. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 90-91, 86-96.	1.6	37
50	Investigation of gravity waves using horizontally resolved radial velocity measurements. Atmospheric Measurement Techniques, 2013, 6, 2893-2905.	3.1	37
51	Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles. Annales Geophysicae, 2009, 27, 2417-2422.	1.6	36
52	SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World's Strongest Hotspot. Bulletin of the American Meteorological Society, 2021, 102, E871-E893.	3.3	36
53	The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales. Annales Geophysicae, 2009, 27, 953-965.	1.6	34
54	Spectral properties of mesospheric ice clouds: Evidence for nonspherical particles. Journal of Geophysical Research, 2007, 112, .	3.3	33

#	Article	IF	CITATIONS
55	Does Strong Tropospheric Forcing Cause Largeâ€Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case Study. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,422.	3.3	33
56	Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign. Annales Geophysicae, 2013, 31, 775-785.	1.6	32
57	Charge and size distribution of mesospheric aerosol particles measured inside NLC and PMSE during MIDAS MaCWAVE 2002. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 114-123.	1.6	30
58	Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. Journal of Geophysical Research: Space Physics, 2015, 120, 736-750.	2.4	30
59	Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. Results. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 486-496.	1.6	29
60	Meteoric smoke particle properties derived using dual-beam Arecibo UHF observations of D-region spectra during different seasons. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1982-1991.	1.6	29
61	Rocketâ€borne in situ measurements of meteor smoke: Charging properties and implications for seasonal variation. Journal of Geophysical Research, 2010, 115, .	3.3	29
62	Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?. Atmospheric Chemistry and Physics, 2017, 17, 4031-4052.	4.9	29
63	Capture rates of electrons and positive ions by mesospheric aerosol particles. Journal of Aerosol Science, 2000, 31, 1367-1369.	3.8	28
64	Electron temperature dependence of PMSE power: experimental and modelling results. Advances in Space Research, 2001, 28, 1077-1082.	2.6	28
65	Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162, 16-27.	1.6	28
66	Microphysical parameters of mesospheric ice clouds derived from calibrated observations of polar mesosphere summer echoes at Bragg wavelengths of 2.8 m and 30 cm. Journal of Geophysical Research, 2010, 115, .	3.3	27
67	Electron loss and meteoric dust in the mesosphere. Annales Geophysicae, 2012, 30, 1495-1501.	1.6	27
68	PMC Turbo: Studying Gravity Wave and Instability Dynamics in the Summer Mesosphere Using Polar Mesospheric Cloud Imaging and Profiling From a Stratospheric Balloon. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6423-6443.	3.3	27
69	Intense turbulence observed above a mesospheric temperature inversion at equatorial latitude. Geophysical Research Letters, 2006, 33, .	4.0	26
70	The sensitivity of mesospheric ice layers to atmospheric background temperatures and water vapor. Advances in Space Research, 2007, 40, 794-801.	2.6	26
71	Influence of tides and gravity waves on layering processes in the polar summer mesopause region. Annales Geophysicae, 2008, 26, 4013-4022.	1.6	26
72	Gravity waves excited during a minor sudden stratospheric warming. Atmospheric Chemistry and Physics, 2018, 18, 12915-12931.	4.9	26

#	Article	IF	CITATIONS
73	Largeâ€Amplitude Mountain Waves in the Mesosphere Accompanying Weak Crossâ€Mountain Flow During DEEPWAVE Research Flight RF22. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9992.	3.3	26
74	On the occurrence and formation of multiple layers of polar mesosphere summer echoes. Geophysical Research Letters, 2005, 32, .	4.0	25
75	Latitudinal dependence of noctilucent cloud growth. Geophysical Research Letters, 2006, 33, .	4.0	25
76	First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign. Annales Geophysicae, 2009, 27, 755-766.	1.6	25
77	Bite-outs and other depletions of mesospheric electrons. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2201-2211.	1.6	25
78	Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina. Scientific Reports, 2020, 10, 14529.	3.3	25
79	A new technique for the analysis of neutral air density fluctuations measured in situ in the middle atmosphere. Geophysical Research Letters, 2003, 30, .	4.0	24
80	The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings. Annales Geophysicae, 2013, 31, 1397-1415.	1.6	24
81	Atmospheric Conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Monthly Weather Review, 2017, 145, 4249-4275.	1.4	24
82	Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes. Atmospheric Chemistry and Physics, 2003, 3, 1399-1407.	4.9	23
83	Meteor smoke influences on the D-region charge balance – review of recent in situ measurements and one-dimensional model results. Annales Geophysicae, 2013, 31, 2049-2062.	1.6	23
84	Effects of meteoric smoke particles on the <i>D</i> region ion chemistry. Journal of Geophysical Research: Space Physics, 2015, 120, 10,823.	2.4	23
85	Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at AndAya, Norway. Annales Geophysicae, 2016, 34, 1209-1229.	1.6	23
86	MAARSY – the new MST radar on AndÃya/Norway. Advances in Radio Science, 0, 8, 219-224.	0.7	22
87	First three-dimensional observations of polar mesosphere winter echoes: Resolving space-time ambiguity. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	22
88	Majority of PMSE spectral widths at UHF and VHF are compatible with a single scattering mechanism. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2142-2152.	1.6	22
89	Mesosphere and lower thermosphere zonal wind variations over low latitudes: Relation to local stratospheric zonal winds and global circulation anomalies. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5913-5927.	3.3	22
90	The ECOMA 2007 campaign: rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer. Annales Geophysicae, 2009, 27, 781-796.	1.6	21

#	Article	IF	CITATIONS
91	An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmospheric Measurement Techniques, 2018, 11, 1031-1048.	3.1	21
92	Largeâ€Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 1. Wave Development, Scales, Momentum Fluxes, and Environmental Sensitivity. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10364-10384.	3.3	21
93	Payload charging events in the mesosphere and their impact on Langmuir type electric probes. Annales Geophysicae, 2013, 31, 187-196.	1.6	20
94	The Geminid meteor shower during the ECOMA sounding rocket campaign: specular and head echo radar observations. Annales Geophysicae, 2013, 31, 473-487.	1.6	20
95	Modelling of particle charging in the polar summer mesosphere: Part 2—Application to measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 771-780.	1.6	19
96	Effect of ice particles on the mesospheric potassium layer at Spitsbergen (78°N). Journal of Geophysical Research, 2007, 112, .	3.3	19
97	Signatures of mesospheric particles in ionospheric data. Annales Geophysicae, 2009, 27, 823-829.	1.6	19
98	Seasonal and solar activity variability of D-region electron density at 69°N. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 925-935.	1.6	19
99	The Turbopause experiment: atmospheric stability and turbulent structure spanning the turbopause altitude. Annales Geophysicae, 2011, 29, 2327-2339.	1.6	19
100	Morphology of turbulence in the polar summer mesopause region during the MIDAS/SOLSTICE campaign 2001. Advances in Space Research, 2003, 31, 2069-2074.	2.6	18
101	Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign. Annales Geophysicae, 2009, 27, 1449-1456.	1.6	18
102	Testing linear gravity wave theory with simultaneous wind and temperature data from the mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 93, 57-69.	1.6	18
103	Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation. Monthly Weather Review, 2016, 144, 77-98.	1.4	18
104	Mountain waves modulate the water vapor distribution in the UTLS. Atmospheric Chemistry and Physics, 2017, 17, 14853-14869.	4.9	18
105	Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign. Annales Geophysicae, 2017, 35, 547-565.	1.6	18
106	Demonstration of an iron fluorescence lidar operating at 372  nm wavelength using a newly-developed Nd:YAG laser. Optics Letters, 2017, 42, 2858.	3.3	18
107	Assessing middle atmosphere weather models using infrasound detections from microbaroms. Geophysical Journal International, 2019, 216, 1761-1767.	2.4	18
108	Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999–2008. Atmospheric Chemistry and Physics, 2011, 11, 1355-1366.	4.9	17

#	Article	IF	CITATIONS
109	Multi-instrument comparisons of D-region plasma measurements. Annales Geophysicae, 2013, 31, 135-144.	1.6	17
110	Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project. , 2019, , 845-887.		17
111	Mesospheric Bore Evolution and Instability Dynamics Observed in PMC Turbo Imaging and Rayleigh Lidar Profiling Over Northeastern Canada on 13 July 2018. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032037.	3.3	17
112	MAARSY – the new MST radar on AndÃya: first results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array. Advances in Radio Science, 0, 10, 291-298.	0.7	17
113	Rocket measurements of positive ions during polar mesosphere winter echo conditions. Atmospheric Chemistry and Physics, 2006, 6, 5515-5524.	4.9	16
114	Comment on "lce iron/sodium film as cause for high noctilucent cloud radar reflectivity―by P. M. Bellan. Journal of Geophysical Research, 2009, 114, .	3.3	16
115	Studies of polar mesosphere summer echoes with the EISCAT VHF and UHF radars: Information contained in the spectral shape. Advances in Space Research, 2010, 45, 247-259.	2.6	16
116	Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010. Annales Geophysicae, 2013, 31, 61-73.	1.6	16
117	Large Midlatitude Stratospheric Temperature Variability Caused by Inertial Instability: A Potential Source of Bias for Gravity Wave Climatologies. Geophysical Research Letters, 2018, 45, 10,682.	4.0	16
118	Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002. Annales Geophysicae, 2005, 23, 1147-1156.	1.6	15
119	Secondary charging effects due to icy dust particle impacts on rocket payloads. Annales Geophysicae, 2012, 30, 433-439.	1.6	15
120	Unusual appearance of motherâ€ofâ€pearl clouds above El Calafate, Argentina (50°21′S, 72°16′W). We 2020, 75, 378-388.	eather, 0.7	15
121	Rocket probing of PMSE and NLC — Results from the recent MIDAS/MaCWAVE campaign. Advances in Space Research, 2003, 31, 2061-2067.	2.6	14
122	The role of charged ice particles for the creation of PMSE: A review of recent developments. Advances in Space Research, 2003, 31, 2033-2043.	2.6	14
123	Mountain-Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study. Monthly Weather Review, 2018, 146, 1861-1888.	1.4	14
124	Atmospheric band fitting coefficients derived from a self-consistent rocket-borne experiment. Atmospheric Chemistry and Physics, 2019, 19, 1207-1220.	4.9	13
125	PMSE-observations with the EISCAT VHF and UHF-radars: Statistical properties. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 944-956.	1.6	12
126	Statistical characteristics of PMWE observations by the EISCAT VHF radar. Annales Geophysicae, 2013, 31, 359-375.	1.6	12

#	Article	IF	CITATIONS
127	Mesospheric Temperature During the Extreme Midlatitude Noctilucent Cloud Event on 18/19 July 2016. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,775.	3.3	12
128	Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data. Atmospheric Measurement Techniques, 2019, 12, 5997-6015.	3.1	12
129	Coordinated investigation of plasma and neutral density fluctuations and particles during the MaCWAVE/MIDAS summer 2002 program. Geophysical Research Letters, 2004, 31, .	4.0	11
130	Charging of meteoric smoke and ice particles in the mesosphere including photoemission and photodetachment rates. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2212-2220.	1.6	11
131	New experiments to validate the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY). Advances in Radio Science, 0, 11, 283-289.	0.7	11
132	Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project. Atmospheric Chemistry and Physics, 2019, 19, 11443-11460.	4.9	11
133	In-situ density measurements in the mesosphere/lower thermosphere region with the TOTAL and CONE instruments. , 2013, , 1-11.		11
134	Nucleation of mesospheric cloud particles: Sensitivities and limits. Journal of Geophysical Research: Space Physics, 2016, 121, 2621-2644.	2.4	10
135	In situ observations of small scale neutral and plasma dynamics in the mesosphere/lower thermosphere at 79°N. Advances in Space Research, 2006, 38, 2388-2393.	2.6	9
136	PMSE strength during enhanced D region electron densities: Faraday rotation and absorption effects at VHF frequencies. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 113-118.	1.6	9
137	Observations of mesospheric ice particles from the ALWIN radar and SOFIE. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2176-2183.	1.6	8
138	Observations of NO in the upper mesosphere and lower thermosphere during ECOMA 2010. Annales Geophysicae, 2012, 30, 1611-1621.	1.6	8
139	Gravity wave influence on NLC: experimental results from ALOMAR, 69° N. Atmospheric Chemistry and Physics, 2013, 13, 11951-11963.	4.9	8
140	High-resolution vertical velocities and their power spectrum observed with the MAARSY radar – PartÂ1: frequency spectrum. Annales Geophysicae, 2018, 36, 577-586.	1.6	8
141	Sounding rocket project "PMWE―for investigation of polar mesosphere winter echoes. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 218, 105596.	1.6	8
142	High adence Lidar Observations of Middle Atmospheric Temperature and Gravity Waves at the Southern Andes Hot Spot. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034683.	3.3	8
143	Comment on "The response time of PMSE to ionospheric heating―by E. Belova et al Journal of Geophysical Research, 2003, 108, .	3.3	7
144	A reconsideration of spectral width measurements in PMSE with EISCAT. Advances in Space Research, 2006, 38, 2408-2412.	2.6	7

#	Article	IF	CITATIONS
145	PMSE and E-region plasma instability: In situ observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 143-157.	1.6	7
146	D region meteoric smoke and neutral temperature retrieval using the poker flat incoherent scatter radar. Geophysical Research Letters, 2012, 39, .	4.0	7
147	PMSE observations with the EISCAT VHF- and UHF-radars: Ice particles and their effect on ambient electron densities. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104, 270-276.	1.6	7
148	The Hiccup: a dynamical coupling process during the autumn transition in the Northern Hemisphere – similarities and differences to sudden stratospheric warmings. Annales Geophysicae, 2015, 33, 199-206.	1.6	7
149	Horizontally resolved structures of radar backscatter from polar mesospheric layers. Advances in Radio Science, 0, 10, 285-290.	0.7	7
150	Estimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign. Annales Geophysicae, 2017, 35, 979-998.	1.6	6
151	First experimental verification of summertime mesospheric momentum balance based on radar wind measurements at 69° N. Annales Geophysicae, 2015, 33, 1091-1096.	1.6	6
152	Validation of the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY). Advances in Radio Science, 0, 10, 245-253.	0.7	6
153	In situ measurements of mesospheric turbulence during spring transition of the Arctic mesosphere. Geophysical Research Letters, 2002, 29, 115-1-115-4.	4.0	5
154	UV limb-scatter spectra of noctilucent clouds consistent with mono-modal particle size distribution. Geophysical Research Letters, 2007, 34, .	4.0	5
155	Localized mesosphere-stratosphere-troposphere radar echoes from the <i>E</i> region at 69°N: Properties and physical mechanisms. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	5
156	Multi beam observations of cosmic radio noise using a VHF radar with beam forming by a Butler matrix. Advances in Radio Science, 0, 9, 349-357.	0.7	5
157	Secondary electron emission from meteoric smoke particles inside the polar ionosphere. Annales Geophysicae, 2016, 34, 573-580.	1.6	5
158	Atomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors on WADIS-2. Atmospheric Measurement Techniques, 2019, 12, 2445-2461.	3.1	5
159	Nonlinear Simulations of Gravity Wave Tunneling and Breaking over Auckland Island. Journals of the Atmospheric Sciences, 2021, 78, 1567-1582.	1.7	5
160	Microphysical Properties of Mesospheric Aerosols: An Overview of In Situ-Results from the ECOMA Project. , 2011, , 67-74.		5
161	Gravityâ€Waveâ€Driven Seasonal Variability of Temperature Differences Between ECMWF IFS and Rayleigh Lidar Measurements in the Lee of the Southern Andes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
162	Charged Aerosol Effects on the Scattering of Radar Waves from the D-Region. Springer Atmospheric Sciences, 2013, , 339-363.	0.3	4

#	Article	IF	CITATIONS
163	On the heterogeneous nucleation of mesospheric ice on meteoric smoke particles: Microphysical modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 118, 180-189.	1.6	4
164	Reply to comment by P. M. Bellan on "Comment on â€~ice iron/sodium film as cause for high noctilucent cloud radar reflectivity'― Journal of Geophysical Research, 2010, 115, .	3.3	3
165	The impact of solar radiation on polar mesospheric ice particle formation. Atmospheric Chemistry and Physics, 2019, 19, 4311-4322.	4.9	3
166	A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results. Atmospheric Measurement Techniques, 2021, 14, 983-993.	3.1	3
167	Measurement characteristics of an airborne microwave temperature profiler (MTP). Atmospheric Measurement Techniques, 2021, 14, 1689-1713.	3.1	3
168	Nighttime O(1D) and corresponding Atmospheric Band emission (762Ânm) derived from rocket-borne experiment. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 213, 105522.	1.6	2
169	An Interactive Library Classification Systems Module. Technical Services Quarterly, 2001, 18, 11-19.	0.2	1
170	Reply to comment by J. Klostermeyer on "Neutral air turbulence and temperatures in the vicinity of polar mesosphere summer echoes―by FJ. Lübken, M. Rapp, and P. Hoffmann. Journal of Geophysical Research, 2003, 108, .	3.3	1
171	Preface ''Structure, composition, and dynamics of the middle atmosphere and lower ionosphere during a major meteor shower''. Annales Geophysicae, 2013, 31, 1829-1831.	1.6	1
172	Corrigendum to "Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010", published in Ann. Geophys., 31, 61–73, 2013. Annales Geophysicae, 2015, 33, 197-197.	1.6	1
173	Mapping the Earth's cosmic dust layer by differential solar occultation. , 2002, , .		0
174	Reply to Comment on "Nucleation of Mesospheric Cloud Particles: Sensitivities and Limitsâ€: Journal of Geophysical Research: Space Physics, 2019, 124, 3167.	2.4	0
175	Assessment of the Precision of Spectral Model Turbulence Analysis Techniques Using Direct Numerical Simulation Data. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	0