
Zhiguo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regeneration Research, 2022, 17, 1633.	3.0	6
2	Fecal Microbiota Transplantation Exerts Neuroprotective Effects in a Mouse Spinal Cord Injury Model by Modulating the Microenvironment at the Lesion Site. Microbiology Spectrum, 2022, 10, e0017722.	3.0	20
3	Induced neural stem cells from Macaca fascicularis show potential of dopaminergic neuron specification and efficacy in a mouse Parkinson's disease model. Acta Histochemica, 2022, 124, 151927.	1.8	2
4	Unusual electrophysiological findings in a Chinese ALS 4 family with SETX-L389S mutation: a three-year follow-up. Journal of Neurology, 2021, 268, 1050-1058.	3.6	4
5	Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 2021, 9, 59.	11.1	97
6	Astrocytes constitute the major TNF-α-producing cell population in the infarct cortex in dMCAO rats receiving intravenous MSC infusion. Biomedicine and Pharmacotherapy, 2021, 142, 111971.	5.6	4
7	Impact of hydrogel stiffness on the induced neural stem cells modulation. Annals of Translational Medicine, 2021, 9, 1784-1784.	1.7	6
8	Mesenchymal Stem/Stromal Cell-Mediated Mitochondrial Transfer and the Therapeutic Potential in Treatment of Neurological Diseases. Stem Cells International, 2020, 2020, 1-16.	2.5	24
9	Peripheral Circulation and Astrocytes Contribute to the MSC-Mediated Increase in IGF-1 Levels in the Infarct Cortex in a dMCAO Rat Model. Stem Cells International, 2020, 2020, 1-13.	2.5	4
10	Case Report: Humanized Selective CD19CAR-T Treatment Induces MRD-Negative Remission in a Pediatric B-ALL Patient With Primary Resistance to Murine-Based CD19CAR-T Therapy. Frontiers in Immunology, 2020, 11, 581116.	4.8	2
11	Proteostasis of α-Synuclein and Its Role in the Pathogenesis of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2020, 14, 45.	3.7	21
12	Generation of Induced Neural Stem Cells from Peripheral Mononuclear Cells and Differentiation Toward Dopaminergic Neuron Precursors for Transplantation Studies. Journal of Visualized Experiments, 2019, , .	0.3	3
13	Treatment with Humanized Selective CD19CAR-T Cells Shows Efficacy in Highly Treated B-ALL Patients Who Have Relapsed after Receiving Murine-Based CD19CAR-T Therapies. Clinical Cancer Research, 2019, 25, 5595-5607.	7.0	38
14	Melatonin Treatment Alleviates Spinal Cord Injury-Induced Gut Dysbiosis in Mice. Journal of Neurotrauma, 2019, 36, 2646-2664.	3.4	49
15	Employing Endogenous NSCs to Promote Recovery of Spinal Cord Injury. Stem Cells International, 2019, 2019, 1-10.	2.5	35
16	The Effect of Human Umbilical Cord Mesenchymal Stromal Cells in Protection of Dopaminergic Neurons from Apoptosis by Reducing Oxidative Stress in the Early Stage of a 6-OHDA-Induced Parkinson's Disease Model. Cell Transplantation, 2019, 28, 87S-99S.	2.5	22
17	Enhancing glycolysis attenuates Parkinson's disease progression in models and clinical databases. Journal of Clinical Investigation, 2019, 129, 4539-4549.	8.2	159
18	TNFα-induced Up-regulation of Ascl2 Affects the Differentiation and Proliferation of Neural Stem		15

Cells. , 2019, 10, 1207.

ZHIGUO CHEN

#	Article	IF	CITATIONS
19	Intravenous Transplantation of Mesenchymal Stem Cells Reduces the Number of Infiltrated Ly6C ⁺ Cells but Enhances the Proportions Positive for BDNF, TNF-1 <i>1±</i> , and IL-1 <i>1²</i> in the Infarct Cortices of dMCAO Rats. Stem Cells International, 2018, 2018, 1-14.	2.5	13
20	Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death and Disease, 2018, 9, 923.	6.3	12
21	Culture of pyramidal neural precursors, neural stem cells, and fibroblasts on various biomaterials. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2168-2186.	3.5	4
22	Dopaminergic precursors differentiated from human blood-derived induced neural stem cells improve symptoms of a mouse Parkinson's disease model. Theranostics, 2018, 8, 4679-4694.	10.0	26
23	Differentiation of Glial Cells From hiPSCs: Potential Applications in Neurological Diseases and Cell Replacement Therapy. Frontiers in Cellular Neuroscience, 2018, 12, 239.	3.7	38
24	SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature, 2018, 560, 661-665.	27.8	128
25	Differentiation of Human Induced Pluripotent Stem Cells to Purkinje Neurons. , 2018, , 247-258.		0
26	Cell Therapy for Parkinson's Disease. , 2018, , 659-672.		1
27	MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Scientific Reports, 2017, 7, 2505.	3.3	4
28	Mesenchymal Stem Cells for Stroke Therapy. , 2017, , 107-132.		1
29	Aberrant trafficking of a Leu89Pro connexin32 mutant associated with X-linked dominant Charcot–Marie–Tooth disease. Neurological Research, 2016, 38, 897-902.	1.3	3
30	Accelerated generation of oligodendrocyte progenitor cells from human induced pluripotent stem cells by forced expression of Sox10 and Olig2. Science China Life Sciences, 2016, 59, 1131-1138.	4.9	22
31	Conversion of adult human peripheral blood mononuclear cells into induced neural stem cell by using episomal vectors. Stem Cell Research, 2016, 16, 236-242.	0.7	31
32	Comparison of intracerebral transplantation effects of different stem cells on rodent stroke models. Cell Biochemistry and Function, 2015, 33, 174-182.	2.9	13
33	Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson's disease model. Cell Discovery, 2015, 1, 15012.	6.7	49
34	PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Communications, 2015, 6, 10068.	12.8	122
35	Lmx1a enhances the effect of iNSCs in a PD model. Stem Cell Research, 2015, 14, 1-9.	0.7	32
36	Cell therapy for macular degeneration—first phase I/II pluripotent stem cell-based clinical trial shows promise. Science China Life Sciences, 2015, 58, 119-120.	4.9	8

ZHIGUO CHEN

#	Article	IF	CITATIONS
37	Differentiation of human induced pluripotent stem cells to mature functional Purkinje neurons. Scientific Reports, 2015, 5, 9232.	3.3	82
38	Cell Therapy for Parkinson's Disease: New Hope from Reprogramming Technologies. , 2015, 6, 499.		14
39	Introduction to the special topic "Stem cells and regenerative medicineâ€. Science China Life Sciences, 2014, 57, 561-563.	4.9	1
40	Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain, Behavior, and Immunity, 2013, 30, 45-53.	4.1	109
41	Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Scientific Reports, 2013, 3, 2786.	3.3	33
42	Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Research, 2012, 22, 769-772.	12.0	38
43	Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Research, 2012, 22, 208-218.	12.0	135
44	Characterizing the induction of diabetes in juvenile cynomolgus monkeys with different doses of streptozotocin. Science China Life Sciences, 2012, 55, 210-218.	4.9	7
45	Spontaneous transformation of cynomolgus mesenchymal stem cells in vitro: Further confirmation by short tandem repeat analysis. Experimental Cell Research, 2012, 318, 435-440.	2.6	11
46	Effect of monolayer cells on sphere cells—Two types of cells that emerge during the neural differentiation of mouse embryonic stem cells. Neuroscience Letters, 2011, 504, 285-289.	2.1	2
47	MHC Mismatch Inhibits Neurogenesis and Neuron Maturation in Stem Cell Allografts. PLoS ONE, 2011, 6, e14787.	2.5	33
48	Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro. Experimental Cell Research, 2011, 317, 2950-2957.	2.6	49
49	A Glimpse of Stem Cell Research in China. Progress in Biochemistry and Biophysics, 2011, 38, 1011-1014.	0.3	0
50	Decreased Fractalkine and Increased IP-10 Expression in Aged Brain of APPswe Transgenic Mice. Neurochemical Research, 2008, 33, 1085-1089.	3.3	74
51	Cellular repair of CNS disorders: an immunological perspective. Human Molecular Genetics, 2008, 17, R84-R92.	2.9	53
52	IL-18 deficiency aggravates kainic acid-induced hippocampal neurodegeneration in C57BL/6 mice due to an overcompensation by IL-12. Experimental Neurology, 2007, 205, 64-73.	4.1	27
53	Aggravation of experimental autoimmune neuritis in TNF-α receptor 1 deficient mice. Journal of Neuroimmunology, 2007, 186, 19-26.	2.3	22
54	Apolipoprotein E deficiency increased microglial activation/CCR3 expression and hippocampal damage in kainic acid exposed mice. Experimental Neurology, 2006, 202, 373-380.	4.1	17

ZHIGUO CHEN

#	Article	IF	CITATIONS
55	Increased cyclin E expression may obviate the role of cyclin D1 during brain development in cyclin D1 knockout mice. Journal of Neurochemistry, 2005, 92, 1281-1284.	3.9	15
56	Increased microglial activation and astrogliosis after intranasal administration of kainic acid in C57BL/6 mice. Journal of Neurobiology, 2005, 62, 207-218.	3.6	47
57	Reduced susceptibility to Kainic Acid-induced excitoxicity in T-cell deficient CD4/CD8(â^'/â^') and middle-aged C57BL/6 mice. Journal of Neuroimmunology, 2004, 146, 33-38.	2.3	8
58	The chemokine receptor CCR5 is not a necessary inflammatory mediator in kainic acid-induced hippocampal injury: evidence for a compensatory effect by increased CCR2 and CCR3. Journal of Neurochemistry, 2004, 86, 61-68.	3.9	17
59	CCR5 deficiency does not prevent P0 peptide 180–199 immunized mice from experimental autoimmune neuritis. Neurobiology of Disease, 2004, 16, 630-637.	4.4	19
60	IL-12p35 deficiency alleviates kainic acid-induced hippocampal neurodegeneration in C57BL/6 mice. Neurobiology of Disease, 2004, 17, 171-178.	4.4	16
61	Kainic acid-induced excitotoxic hippocampal neurodegeneration in C57BL/6 mice: B cell and T cell subsets may contribute differently to the pathogenesis. Brain, Behavior, and Immunity, 2004, 18, 175-185.	4.1	17
62	Increased Susceptibility to Experimental Autoimmune Neuritis after Upregulation of the Autoreactive T Cell Response to Peripheral Myelin Antigen in Apolipoprotein E-Deficient Mice. Journal of Neuropathology and Experimental Neurology, 2004, 63, 120-128.	1.7	15
63	Neutralizing Antibodies to IL-18 Ameliorate Experimental Autoimmune Neuritis by Counter-Regulation of Autoreactive Th1 Responses to Peripheral Myelin Antigen. Journal of Neuropathology and Experimental Neurology, 2002, 61, 614-622.	1.7	39
64	CD4 and CD8 T Cells, but Not B Cells, Are Critical to the Control of Murine Experimental Autoimmune Neuritis. Experimental Neurology, 2002, 177, 314-320.	4.1	23
65	Excitotoxic neurodegeneration induced by intranasal administration of kainic acid in C57BL/6 mice. Brain Research, 2002, 931, 135-145.	2.2	46
66	Initiation and development of experimental autoimmune neuritis in Lewis rats is independent of the cytotoxic capacity of NKR-P1A+ cells. Journal of Neuroscience Research, 2002, 67, 823-828.	2.9	6
67	Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene, 2000, 19, 5123-5133.	5.9	235