
Mikko Hiltunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903078/publications.pdf Version: 2024-02-01

MIKKO HILTUNEN

#	Article	IF	CITATIONS
1	Expression of C9orf72 hexanucleotide repeat expansion leads to formation of RNA foci and dipeptide repeat proteins but does not influence autophagy or proteasomal function in neuronal cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119021.	4.1	5
2	Targeting Oxidative Stress with Antioxidant Duotherapy after Experimental Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 10555.	4.1	6
3	Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Molecular Neurodegeneration, 2020, 15, 66.	10.8	22
4	The Alzheimer's disease-associated protective Plcγ2-P522R variant promotes immune functions. Molecular Neurodegeneration, 2020, 15, 52.	10.8	48
5	Using online game-based platforms to improve student performance and engagement in histology teaching. BMC Medical Education, 2019, 19, 273.	2.4	106
6	C9orf72 Proteins Regulate Autophagy and Undergo Autophagosomal or Proteasomal Degradation in a Cell Type-Dependent Manner. Cells, 2019, 8, 1233.	4.1	19
7	In Vitro and In Vivo Pipeline for Validation of Disease-Modifying Effects of Systems Biology-Derived Network Treatments for Traumatic Brain Injury—Lessons Learned. International Journal of Molecular Sciences, 2019, 20, 5395.	4.1	9
8	l-Type Amino Acid Transporter 1 (LAT1/Lat1)-Utilizing Prodrugs Can Improve the Delivery of Drugs into Neurons, Astrocytes and Microglia. Scientific Reports, 2019, 9, 12860.	3.3	53
9	Predicting Development of Alzheimer's Disease in Patients with Shunted Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2019, 71, 1233-1243.	2.6	28
10	Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiology of Aging, 2019, 75, 98-108.	3.1	24
11	Incidence, Comorbidities, and Mortality in Idiopathic Normal PressureÂHydrocephalus. World Neurosurgery, 2018, 112, e624-e631.	1.3	37
12	Copy number loss in SFMBT1 is common among Finnish and Norwegian patients with iNPH. Neurology: Genetics, 2018, 4, e291.	1.9	14
13	S-[18F]THK-5117-PET and [11C]PIB-PET Imaging in Idiopathic Normal Pressure Hydrocephalus in Relation to Confirmed Amyloid-β Plaques and Tau in Brain Biopsies. Journal of Alzheimer's Disease, 2018, 64, 171-179.	2.6	14
14	Neuropsychological Profile in the C9ORF72 Associated Behavioral Variant Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 58, 479-489.	2.6	11
15	Decreased plasma βâ€amyloid in the Alzheimer's disease <scp><i>APP</i></scp> <scp>A</scp> 673 <scp>T</scp> variant carriers. Annals of Neurology, 2017, 82, 128-132.	5.3	39
16	Alzheimer's Disease-Related Polymorphisms in Shunt-Responsive Idiopathic Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2017, 60, 1077-1085.	2.6	8
17	Genetic risk factors in Finnish patients with Parkinson's disease. Parkinsonism and Related Disorders, 2017, 45, 39-43.	2.2	19
18	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783

Mikko Hiltunen

#	Article	IF	CITATIONS
19	Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Research, 2017, 136, 18-34.	1.6	44
20	PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports, 2017, 9, 1885-1897.	4.8	239
21	Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS ONE, 2017, 12, e0185777.	2.5	38
22	DHCR24 exerts neuroprotection upon inflammation-induced neuronal death. Journal of Neuroinflammation, 2017, 14, 215.	7.2	34
23	FRMD4A-cytohesin signaling modulates cellular release of Tau. Journal of Cell Science, 2016, 129, 2003-15.	2.0	27
24	SEPT8 modulates \hat{l}^2 -amyloidogenic processing of APP via affecting the sorting and accumulation of BACE1. Journal of Cell Science, 2016, 129, 2224-38.	2.0	15
25	The role of the FTD-ALS associated C9orf72 expansion in suicide victims. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 589-592.	1.7	4
26	Familial idiopathic normal pressure hydrocephalus. Journal of the Neurological Sciences, 2016, 368, 11-18.	0.6	30
27	Effects of Alzheimer's Disease-Associated Risk Loci on Amyloid-β Accumulation in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. Journal of Alzheimer's Disease, 2016, 55, 995-1003.	2.6	6
28	Multimodal analysis to predict shunt surgery outcome of 284 patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2016, 158, 2311-2319.	1.7	21
29	Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease. Neurochemistry International, 2016, 92, 13-24.	3.8	49
30	Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiology of Disease, 2016, 85, 187-205.	4.4	27
31	The Expression of Transthyretin and Amyloid-β Protein Precursor is Altered in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. Journal of Alzheimer's Disease, 2015, 48, 959-968.	2.6	19
32	Amyloid-β and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus. Journal of Alzheimer's Disease, 2015, 46, 261-269.	2.6	39
33	Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Progress in Neurobiology, 2015, 131, 1-20.	5.7	74
34	Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nature Genetics, 2015, 47, 445-447.	21.4	283
35	Reduction of epileptiform activity by valproic acid in a mouse model of Alzheimer's disease is not long-lasting after treatment discontinuation. Epilepsy Research, 2015, 112, 43-55.	1.6	24
36	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173

Mikko Hiltunen

#	Article	IF	CITATIONS
37	Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and inÂvitro models. Neurobiology of Aging, 2015, 36, 1221.e15-1221.e28.	3.1	55
38	High Risk Population Isolate Reveals Low Frequency Variants Predisposing to Intracranial Aneurysms. PLoS Genetics, 2014, 10, e1004134.	3.5	55
39	Cerebrospinal Fluid Biomarker and Brain Biopsy Findings in Idiopathic Normal Pressure Hydrocephalus. PLoS ONE, 2014, 9, e91974.	2.5	91
40	Krebs cycle dysfunction shapes epigenetic landscape of chromatin: Novel insights into mitochondrial regulation of aging process. Cellular Signalling, 2014, 26, 1598-1603.	3.6	78
41	KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, does not modify secondary pathology in the thalamus following focal cerebral stroke in rats. Neuroscience Letters, 2014, 580, 173-177.	2.1	5
42	Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process. Ageing Research Reviews, 2014, 16, 45-65.	10.9	95
43	High-fat diet increases tau expression in the brain of T2DM and AD mice independently of peripheral metabolic status. Journal of Nutritional Biochemistry, 2014, 25, 634-641.	4.2	50
44	Effects of Alzheimer's Disease-Associated Risk Loci on Cerebrospinal Fluid Biomarkers and Disease Progression: A Polygenic Risk Score Approach. Journal of Alzheimer's Disease, 2014, 43, 565-573.	2.6	49
45	Increased Î ³ -Secretase Activity in Idiopathic Normal Pressure Hydrocephalus Patients with Î ² -Amyloid Pathology. PLoS ONE, 2014, 9, e93717.	2.5	12
46	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
47	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
48	O1-01-01: Cerebrospinal fluid biomarkers for Alzheimer's disease are associated with neuropathology in cortical brain biopsy. , 2012, 8, P83-P84.		0
49	Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice . Journal of Cellular and Molecular Medicine, 2012, 16, 1206-1222.	3.6	67
50	Genetic Risk Factors: Their Function and Comorbidities in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-2.	2.0	1
51	Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Communicative and Integrative Biology, 2011, 4, 428-432.	1.4	6
52	Down-regulation of Seladin-1 Increases BACE1 Levels and Activity through Enhanced GGA3 Depletion during Apoptosis. Journal of Biological Chemistry, 2009, 284, 34433-34443.	3.4	54