
Giovanni Agostini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cobalt nanoclusters coated with N-doped carbon for chemoselective nitroarene hydrogenation and tandem reactions in water. Green Chemistry, 2021, 23, 4490-4501.	4.6	31
2	Bottom-up assembly of bimetallic nanocluster catalysts from oxide-supported single-atom precursors. Journal of Materials Chemistry A, 2021, 9, 8401-8415.	5.2	8
3	AgY zeolite as catalyst for the selective catalytic oxidation of NH3. Microporous and Mesoporous Materials, 2021, 323, 111230.	2.2	15
4	Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH ₃ . Journal of Materials Chemistry A, 2021, 9, 27448-27458.	5.2	11
5	The Effect of Iron and Vanadium in VO y /Ce 1â€x Fe x O 2â€î́ Catalysts in Lowâ€Temperature Selective Catalytic Reduction of NO x by Ammonia. ChemCatChem, 2020, 12, 2440-2451.	1.8	5
6	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie - International Edition, 2020, 59, 5806-5815.	7.2	76
7	Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society, 2020, 142, 14890-14902.	6.6	75
8	Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catalysis Science and Technology, 2020, 10, 3646-3653.	2.1	7
9	Spectroscopy in Catalysis. Catalysts, 2020, 10, 408.	1.6	1
10	Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society, 2020, 142, 5087-5096.	6.6	98
11	Pd–Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation. Catalysis Science and Technology, 2020, 10, 2503-2512.	2.1	20
12	Local Structures of Oxygen-Deficient Perovskite Sr ₂ ScGaO ₅ Polymorphs Explored by Total Neutron Scattering and EXAFS Spectroscopy. Inorganic Chemistry, 2020, 59, 9434-9442.	1.9	4
13	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie, 2020, 132, 5855-5864.	1.6	21
14	Rationalizing the Effect of Triethylaluminum on the Cr/SiO ₂ Phillips Catalysts. ACS Catalysis, 2020, 10, 2694-2706.	5.5	15
15	Insights into the Promotion with Ru of Co/TiO ₂ Fischer–Tropsch Catalysts: An In Situ Spectroscopic Study. ACS Catalysis, 2020, 10, 6042-6057.	5.5	39
16	Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites. Chemistry - A European Journal, 2019, 25, 16390-16396.	1.7	6
17	Zinc single atoms on N-doped carbon: An efficient and stable catalyst for CO2 fixation and conversion. Chinese Journal of Catalysis, 2019, 40, 1679-1685.	6.9	27
18	Additive-Free Nickel-Catalyzed Debenzylation Reactions via Hydrogenative C–O and C–N Bond Cleavage. ACS Sustainable Chemistry and Engineering, 2019, 7, 17107-17113.	3.2	12

#	Article	IF	CITATIONS
19	A flexible cell for <i>in situ</i> combined XAS–DRIFTS–MS experiments. Journal of Synchrotron Radiation, 2019, 26, 801-810.	1.0	6
20	Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects. Applied Catalysis B: Environmental, 2019, 256, 117790.	10.8	44
21	Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 28409-28420.	3.8	4
22	Exploring the benefits beyond the pre-reduction in methane of the Cr/SiO2 Phillips catalyst: The molecular structure of the Cr sites and their role in the catalytic performance. Journal of Catalysis, 2019, 373, 173-179.	3.1	6
23	An <i>in situ</i> XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 12700-12709.	1.3	21
24	CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. Journal of Catalysis, 2018, 359, 76-81.	3.1	21
25	CO Hydrogenation on Cobaltâ€Based Catalysts: Tin Poisoning Unravels CO in Hollow Sites as a Main Surface Intermediate. Angewandte Chemie - International Edition, 2018, 57, 547-550.	7.2	39
26	XAS/DRIFTS/MS spectroscopy for time-resolved <i>operando</i> investigations at high temperature. Journal of Synchrotron Radiation, 2018, 25, 1745-1752.	1.0	22
27	A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. Chemical Science, 2018, 9, 8134-8141.	3.7	63
28	Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts, 2018, 8, 52.	1.6	10
29	Nb-Modified Ce/Ti Oxide Catalyst for the Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysts, 2018, 8, 175.	1.6	19
30	Illuminating the nature and behavior of the active center: the key for photocatalytic H ₂ production in Co@NH ₂ -MIL-125(Ti). Journal of Materials Chemistry A, 2018, 6, 17318-17322.	5.2	27
31	Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst. Science Advances, 2018, 4, eaat0761.	4.7	116
32	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€Supported Cobalt Catalyst. Angewandte Chemie - International Edition, 2018, 57, 14488-14492.	7.2	42
33	Tuning Pt and Cu sites population inside functionalized UiO-67 MOF by controlling activation conditions. Faraday Discussions, 2017, 201, 265-286.	1.6	31
34	Study of methane oxidation over alumina supported Pd–Pt catalysts using <i>operando</i> DRIFTS/MS and <i>in situ</i> XAS techniques. Journal of Lithic Studies, 2017, 3, 24-32.	0.1	14
35	Insights into Cr/SiO ₂ catalysts during dehydrogenation of propane: an operando XAS investigation. Catalysis Science and Technology, 2017, 7, 1690-1700.	2.1	28
36	Structure–reactivity relationship in Co ₃ O ₄ promoted Au/CeO ₂ catalysts for the CH ₃ OH oxidation reaction revealed by in situ FTIR and operando EXAFS studies. Journal of Materials Chemistry A, 2017, 5, 2083-2094.	5.2	23

#	Article	IF	CITATIONS
37	Synergy of Contact between ZnO Surface Planes and PdZn Nanostructures: Morphology and Chemical Property Effects in the Intermetallic Sites for Selective 1,3-Butadiene Hydrogenation. ACS Catalysis, 2017, 7, 796-811.	5.5	45
38	The duality of UiO-67-Pt MOFs: connecting treatment conditions and encapsulated Pt species by <i>operando</i> XAS. Physical Chemistry Chemical Physics, 2017, 19, 27489-27507.	1.3	28
39	Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure. Journal of Chemical Physics, 2017, 147, 044503.	1.2	25
40	Methane oxidation over Pd/Al2O3 under rich/lean cycling followed by operando XAFS and modulation excitation spectroscopy. Journal of Catalysis, 2017, 356, 237-245.	3.1	48
41	A Stable Nanocobalt Catalyst with Highly Dispersed CoN _{<i>x</i>} Active Sites for the Selective Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2017, 56, 16616-16620.	7.2	135
42	Formation and growth of palladium nanoparticles inside porous poly(4-vinyl-pyridine) monitored by operando techniques: The role of different reducing agents. Catalysis Today, 2017, 283, 144-150.	2.2	8
43	Generation of subnanometric platinum with high stability during transformation of a 2D zeolite intoÂ3D. Nature Materials, 2017, 16, 132-138.	13.3	505
44	Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane. Catalysts, 2017, 7, 157.	1.6	43
45	The dynamics of pseudocapacitive phenomena studied by Energy Dispersive X-Ray Absorption Spectroscopy on hydrous iridium oxide electrodes in alkaline media. Electrochimica Acta, 2016, 212, 247-253.	2.6	8
46	A XAFS study of the local environment and reactivity of Pt- sites in functionalized UiO-67 MOFs. Journal of Physics: Conference Series, 2016, 712, 012125.	0.3	10
47	Graphitization of Activated Carbons: A Molecular-level Investigation by INS, DRIFT, XRD and Raman Techniques. Physics Procedia, 2016, 85, 20-26.	1.2	68
48	Pd nanoparticles formation inside porous polymeric scaffolds followed by <i>in situ</i> XANES/SAXS. Journal of Physics: Conference Series, 2016, 712, 012039.	0.3	1
49	Watching Kinetic Studies as Chemical Maps Using Open-Source Software. Analytical Chemistry, 2016, 88, 6154-6160.	3.2	35
50	Room-Temperature CO Oxidation Catalyst: Low-Temperature Metal–Support Interaction between Platinum Nanoparticles and Nanosized Ceria. ACS Catalysis, 2016, 6, 6151-6155.	5.5	136
51	A comprehensive approach to investigate the structural and surface properties of activated carbons and related Pd-based catalysts. Catalysis Science and Technology, 2016, 6, 4910-4922.	2.1	96
52	The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24. Journal of Synchrotron Radiation, 2016, 23, 353-368.	1.0	86
53	Characterization of Surface Structure and Oxidation/Reduction Behavior of Pd–Pt/Al ₂ O ₃ Model Catalysts. Journal of Physical Chemistry C, 2016, 120, 28009-28020.	1.5	25
54	Time-Resolved XAS Investigation of the Local Environment and Evolution of Oxidation States of a Fischer–Tropsch Ru–Cs/C Catalyst. ACS Catalysis, 2016, 6, 1437-1445.	5.5	23

#	Article	IF	CITATIONS
55	Modeling the Structure of Complex Aluminosilicate Glasses: The Effect of Zinc Addition. Journal of Physical Chemistry B, 2016, 120, 2526-2537.	1.2	7
56	The Pyridyl Functional Groups Guide the Formation of Pd Nanoparticles Inside A Porous Poly(4â€Vinylâ€Pyridine). ChemCatChem, 2015, 7, 2188-2195.	1.8	15
57	Progress in the Characterization of the Surface Species in Activated Carbons by means of INS Spectroscopy Coupled with Detailed DFT Calculations. Advances in Condensed Matter Physics, 2015, 2015, 1-8.	0.4	22
58	Anisotropy in the Raman scattering of a CaFeO _{2.5} single crystal and its link with oxygen ordering in Brownmillerite frameworks. Journal of Physics Condensed Matter, 2015, 27, 225403.	0.7	19
59	Probing Reactive Platinum Sites in UiO-67 Zirconium Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 1042-1056.	3.2	105
60	MoS ₂ Nanoparticles Decorating Titanate-Nanotube Surfaces: Combined Microscopy, Spectroscopy, and Catalytic Studies. Langmuir, 2015, 31, 5469-5478.	1.6	55
61	Nanocrystalline TiO2 micropillar arrays grafted on conductive glass supports: microscopic and spectroscopic studies. Thin Solid Films, 2015, 590, 200-206.	0.8	12
62	Catalyst Characterization by XAS and XES Spectroscopies: In Situ and Operando Experiments. , 2015, , 717-736.		5
63	Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 4085-4094.	1.5	45
64	Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al ₂ O ₃ . ACS Catalysis, 2014, 4, 187-194.	5.5	62
65	Close-Packed Dye Molecules in Zeolite Channels Self-Assemble into Supramolecular Nanoladders. Journal of Physical Chemistry C, 2014, 118, 15732-15743.	1.5	41
66	Formation and Growth of Pd Nanoparticles Inside a Highly Cross-Linked Polystyrene Support: Role of the Reducing Agent. Journal of Physical Chemistry C, 2014, 118, 8406-8415.	1.5	37
67	Interaction of NH ₃ with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study. Journal of Physical Chemistry Letters, 2014, 5, 1552-1559.	2.1	248
68	Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. Journal Physics D: Applied Physics, 2013, 46, 423001.	1.3	101
69	Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews, 2013, 113, 1736-1850.	23.0	553
70	Thermal effects on Rhodium nanoparticles supported on carbon. Journal of Physics: Conference Series, 2013, 430, 012031.	0.3	10
71	Growth and characterization of large high quality brownmillerite CaFeO2.5 single crystals. CrystEngComm, 2012, 14, 5771.	1.3	23
72	Effect of reduction in liquid phase on the properties and the catalytic activity of Pd/Al2O3 catalysts. Journal of Catalysis, 2012, 287, 44-54.	3.1	62

#	Article	IF	CITATIONS
73	Rapid purification/oxidation of multi-walled carbon nanotubes under 300 kHz-ultrasound and microwave irradiation. New Journal of Chemistry, 2011, 35, 915.	1.4	31
74	Model oxide supported MoS2 HDS catalysts: structure and surface properties. Catalysis Science and Technology, 2011, 1, 123.	2.1	81
75	0.5wt.% Pd/C catalyst for purification of terephthalic acid: Irreversible deactivation in industrial plants. Journal of Catalysis, 2011, 280, 150-160.	3.1	57
76	Time Resolved in Situ XAFS Study of the Electrochemical Oxygen Intercalation in SrFeO _{2.5} Brownmillerite Structure: Comparison with the Homologous SrCoO _{2.5} System. Journal of Physical Chemistry C, 2011, 115, 1311-1322.	1.5	72
77	<i>î¼</i> â€EXAFS, <i>î¼</i> â€XRF, and <i>î¼</i> â€PL Characterization of a Multiâ€Quantumâ€Well Electroab Modulated Laser Realized via Selective Area Growth. Small, 2011, 7, 930-938.	sorption	21
78	Structural Characterization of Multiâ€Quantum Wells in Electroabsorptionâ€Modulated Lasers by using Synchrotron Radiation Micrometerâ€Beams. Advanced Materials, 2010, 22, 2050-2054.	11.1	18
79	Pd supported catalysts: Evolution of the support during Pd deposition and K doping. Studies in Surface Science and Catalysis, 2010, , 433-436.	1.5	0
80	Preparation of Supported Pd Catalysts: From the Pd Precursor Solution to the Deposited Pd2+ Phase. Langmuir, 2010, 26, 11204-11211.	1.6	61
81	Cold Nanoparticle Aggregates Immobilized on High Surface Area Silica Substrate for Efficient and Clean SERS Applications. Journal of Physical Chemistry C, 2010, 114, 3857-3862.	1.5	29
82	Investigation of carbon and alumina supported Pd catalysts during catalyst preparation. Studies in Surface Science and Catalysis, 2010, , 437-440.	1.5	2
83	Designing TiO ₂ Based Nanostructures by Control of Surface Morphology of Pure and Silver Loaded Titanate Nanotubes. Journal of Physical Chemistry C, 2010, 114, 169-178.	1.5	54
84	In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst. Journal of the American Chemical Society, 2010, 132, 667-678.	6.6	174
85	Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. Chemistry of Materials, 2010, 22, 2297-2308.	3.2	40
86	FTIR spectroscopy and thermodynamics of CO and H2 adsorbed on γ-, δ- and α-Al2O3. Physical Chemistry Chemical Physics, 2010, 12, 6474.	1.3	47
87	Influence of K-doping on a Pd/SiO2–Al2O3 catalyst. Journal of Catalysis, 2009, 267, 40-49.	3.1	44
88	Synchrotron study of oxygen depletion in a Bi-2212 whisker annealed at 363â€K. Journal of Synchrotron Radiation, 2009, 16, 813-817.	1.0	15
89	Pd-Supported Catalysts: Evolution of Support Porous Texture along Pd Deposition and Alkali-Metal Doping. Langmuir, 2009, 25, 6476-6485.	1.6	34
90	Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silicaâ^'Alumina-Supported Pd Nanoparticles: A Multitechnical Approach. Journal of Physical Chemistry C, 2009, 113, 10485-10492.	1.5	124

#	Article	IF	CITATIONS
91	From Isolated Ag ⁺ Ions to Aggregated Ag ⁰ Nanoclusters in Silver-Exchanged Engelhard Titanosilicate (ETS-10) Molecular Sieve: Reversible Behavior. Chemistry of Materials, 2009, 21, 1343-1353.	3.2	43
92	Oriented TiO ₂ Nanostructured Pillar Arrays: Synthesis and Characterization. Advanced Materials, 2008, 20, 3342-3348.	11.1	38
93	Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 64-72.	2.0	140
94	Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO. Chemistry of Materials, 2008, 20, 4957-4968.	3.2	195
95	Au Nanoparticles as SERS Probes of the Silica Surface Layer Structure in the Absence and Presence of Adsorbates. Journal of Physical Chemistry C, 2008, 112, 4932-4936.	1.5	14
96	Reactivity of Cr Species Grafted on SiO ₂ /Si(100) Surface:  A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime. Journal of Physical Chemistry C, 2007, 111, 16437-16444.	1.5	27
97	Role of the Support in Determining the Vibrational Properties of Carbonyls Formed on Pd Supported on SiO2â^'Al2O3, Al2O3, and MgO. Journal of Physical Chemistry C, 2007, 111, 7021-7028.	1.5	54
98	CHAPTER 5. Characterization of MOFs. 2. Long and Local Range Order Structural Determination of MOFs by Combining EXAFS and Diffraction Techniques. RSC Catalysis Series, 0, , 143-208.	0.1	11
99	5. Structural and electronic characterization of nanosized inorganic materials by X-ray absorption spectroscopies. , 0, , .		0