
Tatsuhiko Imaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental Enrichment Increases Radiation-induced Apoptosis Not Spontaneous Apoptosis in Mouse Intestinal Crypt Cells. In Vivo, 2022, 36, 618-627.	0.6	0
2	Copenhagen Rats Display Dominantly Inherited Yet Non-uniform Resistance to Spontaneous, Radiation-induced, and Chemically-induced Mammary Carcinogenesis. Anticancer Research, 2022, 42, 2415-2423.	0.5	0
3	Exome of Radiation-induced Rat Mammary Carcinoma Shows Copy-number Losses and Mutations in Human-relevant Cancer Genes. Anticancer Research, 2021, 41, 55-70.	0.5	5
4	All-Optical Wide-Field Selective Imaging of Fluorescent Nanodiamonds in Cells, <i>In Vivo</i> and <i>Ex Vivo</i> . ACS Nano, 2021, 15, 12869-12879.	7.3	10
5	Development of mammary cancer in ^{ĵ3} -irradiated F1 hybrids of susceptible Sprague-Dawley and resistant Copenhagen rats, with copy-number losses that pinpoint potential tumor suppressors. PLoS ONE, 2021, 16, e0255968.	1.1	4
6	The effect of radiation on the ability of rat mammary cells to form mammospheres. Radiation and Environmental Biophysics, 2020, 59, 711-721.	0.6	2
7	Differential expression of DNA-dependent protein kinase catalytic subunit in the brain of neonatal mice and young adult mice. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 171-179.	1.6	0
8	Estimation of Dose-Rate Effectiveness Factor for Malignant Tumor Mortality: Joint Analysis of Mouse Data Exposed to Chronic and Acute Radiation. Radiation Research, 2020, 194, 500-510.	0.7	5
9	Flow Cytometry Definition of Rat Mammary Epithelial Cell Populations and Their Distinct Radiation Research, 2020, 194, 22.	0.7	5
10	Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. International Journal of Radiation Biology, 2019, 95, 452-479.	1.0	10
11	Establishing the Japan-Store house of animal radiobiology experiments (J-SHARE), a large-scale necropsy and histopathology archive providing international access to important radiobiology data. International Journal of Radiation Biology, 2019, 95, 1372-1377.	1.0	25
12	Neutron-induced Rat Mammary Carcinomas Are Mainly of Luminal Subtype and Have Multiple Copy Number Aberrations. Anticancer Research, 2019, 39, 1135-1142.	0.5	6
13	Funding for radiation research: past, present and future. International Journal of Radiation Biology, 2019, 95, 816-840.	1.0	17
14	Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. International Journal of Radiation Biology, 2019, 95, 1431-1440.	1.0	12
15	8.2.8 Effect of carbon ions on carcinogenesis. Radioisotopes, 2019, 68, 741-748.	0.1	0
16	Epigenetic dysregulation of key developmental genes in radiationâ€induced rat mammary carcinomas. International Journal of Cancer, 2018, 143, 343-354.	2.3	12
17	Prominent Dose-Rate Effect and Its Age Dependence of Rat Mammary Carcinogenesis Induced by Continuous Gamma-Ray Exposure. Radiation Research, 2018, 191, 245.	0.7	11
18	Differential effect of parity on rat mammary carcinogenesis after pre- or post-pubertal exposure to radiation. Scientific Reports, 2018, 8, 14325.	1.6	11

ΤΑΤΣΗΙΚΟ ΙΜΑΟΚΑ

#	Article	lF	CITATIONS
19	Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas. Journal of Radiation Research, 2017, 58, 183-194.	0.8	9
20	Age Modifies the Effect of 2-MeV Fast Neutrons on Rat Mammary Carcinogenesis. Radiation Research, 2017, 188, 419.	0.7	24
21	DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation. PLoS ONE, 2016, 11, e0164194.	1.1	7
22	A Rat Model to Study the Effects of Diet-Induced Obesity on Radiation-Induced Mammary Carcinogenesis. Radiation Research, 2016, 185, 505.	0.7	7
23	Biological measures to minimize the risk of radiotherapy-associated second cancer: A research perspective. International Journal of Radiation Biology, 2016, 92, 289-301.	1.0	13
24	A Report from the 2013 International Symposium. Health Physics, 2015, 108, 551-556.	0.3	11
25	Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis. International Journal of Cancer, 2014, 134, 1529-1538.	2.3	13
26	Age Dependence of Hematopoietic Progenitor Survival and Chemokine Family Gene Induction after Gamma Irradiation in Bone Marrow Tissue in C3H/He Mice. Radiation Research, 2014, 181, 302.	0.7	17
27	Overexpression of NOTCH-regulated ankyrin repeat protein is associated with breast cancer cell proliferation. Anticancer Research, 2014, 34, 2165-71.	0.5	9
28	<i>Ikaros</i> is a critical target during simultaneous exposure to Xâ€rays and Nâ€ethylâ€Nâ€nitrosourea in mouse Tâ€cell lymphomagenesis. International Journal of Cancer, 2013, 132, 259-268.	2.3	3
29	Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma. International Journal of Radiation Oncology Biology Physics, 2013, 85, 1134-1140.	0.4	24
30	Loss of the BRCA1-Interacting Helicase BRIP1 Results in Abnormal Mammary Acinar Morphogenesis. PLoS ONE, 2013, 8, e74013.	1.1	14
31	717 Combined Exposure to Multiple Carcinogens Enhances Development of Rat Mammary Cancers With Characteristic Gene Expression. European Journal of Cancer, 2012, 48, S170.	1.3	0
32	725 Genome-wide Changes of Radiation-induced Mammary Carcinoma of (Sprague-Dawley &) Tj ETQq0 0 0 Cancer, 2012, 48, S172.	rgBT /Ove 1.3	rlock 10 Tf 5 0
33	Aberrant microRNA Expression in Radiation-Induced Rat Mammary Cancer: The Potential Role of miR-194 Overexpression in Cancer Cell Proliferation. Radiation Research, 2012, 179, 151.	0.7	13
34	Progesterone stimulates proliferation of a long-lived epithelial cell population in rat mammary gland. Journal of Endocrinological Investigation, 2012, 35, 828-34.	1.8	2
35	Pre―and postpubertal irradiation induces mammary cancers with distinct expression of hormone receptors, ErbB ligands, and developmental genes in rats. Molecular Carcinogenesis, 2011, 50, 539-552.	1.3	21
36	Aberrant expression and phosphorylation of 4E-BP1, a main target of mTOR signaling, in rat mammary carcinomas: an association with etiology. In Vivo, 2011, 25, 853-60.	0.6	5

ΤΑΤΣUΗΙΚΟ ΙΜΑΟΚΑ

#	Article	IF	CITATIONS
37	Recent Advances in the Biology of Heavy-Ion Cancer Therapy. Journal of Radiation Research, 2010, 51, 365-383.	0.8	122
38	Complicated biallelic inactivation of Pten in radiation-induced mouse thymic lymphomas. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 686, 30-38.	0.4	9
39	DNA Copy Number Aberrations and Disruption of the p16Ink4a/Rb Pathway in Radiation-Induced and Spontaneous Rat Mammary Carcinomas. Radiation Research, 2010, 174, 206-215.	0.7	17
40	513 DNA copy number changes in radiation-induced mammary carcinoma of (SD × COP) F1 hybrid rats. European Journal of Cancer, Supplement, 2010, 8, 131.	2.2	0
41	515 Number of stem-like cells and the genetic susceptibility to mammary carcinogenesis in rats. European Journal of Cancer, Supplement, 2010, 8, 132.	2.2	0
42	Unique Characteristics of Radiation-Induced Apoptosis in the Postnatally Developing Small Intestine and Colon of Mice. Radiation Research, 2009, 173, 310.	0.7	19
43	Radiation-Induced Mammary Carcinogenesis in Rodent Models: What's Different from Chemical Carcinogenesis?. Journal of Radiation Research, 2009, 50, 281-293.	0.8	43
44	Combined Effect of Ionizing Radiation and N-Ethyl-N-Nitrosourea on Mutation Induction and Lymphoma Development. , 2009, , 227-231.		0
45	Gene Expression Profiling Distinguishes Between Spontaneous and Radiation-induced Rat Mammary Carcinomas. Journal of Radiation Research, 2008, 49, 349-360.	0.8	19
46	High Relative Biologic Effectiveness of Carbon Ion Radiation on Induction of Rat Mammary Carcinoma and its Lack of H-ras and Tp53 Mutations. International Journal of Radiation Oncology Biology Physics, 2007, 69, 194-203.	0.4	64
47	Combined Effect of Ionizing Radiation and Alkylating Agents on Cancer Induction. Genes and Environment, 2007, 29, 29-37.	0.9	3
48	Mammary Tumorigenesis inApcMin/+Mice is Enhanced by X Irradiation with a Characteristic Age Dependence. Radiation Research, 2006, 165, 165-173.	0.7	15
49	Mild Inflammation Accelerates Colon Carcinogenesis in <i>Mlh1</i> -Deficient Mice. Oncology, 2006, 71, 124-130.	0.9	19
50	Persistent cell proliferation of terminal end buds precedes radiation-induced rat mammary carcinogenesis. In Vivo, 2006, 20, 353-8.	0.6	5
51	Cooperative induction of rat mammary cancer by radiation and 1-methyl-1-nitrosourea via the oncogenic pathways involving c-Myc activation and H-ras mutation. International Journal of Cancer, 2005, 115, 187-193.	2.3	21
52	Serotonin Regulates Mammary Gland Development via an Autocrine-Paracrine Loop. Developmental Cell, 2004, 6, 193-203.	3.1	219
53	Up-regulation of thymosin beta 4 gene expression in experimentally-induced uterine adenomyosis in mice. In Vivo, 2003, 17, 561-5.	0.6	2
54	Cortactin-Binding Protein 90 (CBP90) Expression in the Mouse Mammary Glands during Prolactin-Induced Lobuloalveolar Development. Zoological Science, 2002, 19, 443-448.	0.3	3

#	Article	IF	CITATIONS
55	Prevention of neonatal estrogen imprinting by vitaminÂA as indicated by estrogen receptor expression in the mouse vagina. Cell and Tissue Research, 2001, 306, 441-447.	1.5	13
56	Extrapituitary Expression of the Prolactin Gene in the Goldfish, African Clawed Frog and Mouse. Zoological Science, 2000, 17, 791-796.	0.3	27
57	ãf—ãfãf©ã,⁻ãfãf³ã®ãfãf¼ã,«ãf«ãªã⁼ãŸã,‰ã• Newsletter of Japan Society for Comparative Endocrinology, 19	999,25,28	3-3 0 .
58	Expression of prolactin messenger ribonucleic acid in the mouse gonads during sexual maturation. Life Sciences, 1998, 63, 2251-2258.	2.0	16