Mati Horprathum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902519/publications.pdf

Version: 2024-02-01

225 papers 2,272 citations

249298 26 h-index 340414 39 g-index

225 all docs 225 docs citations

times ranked

225

3182 citing authors

#	Article	IF	Citations
1	Self-depositing passivation layer investigations on stability improvement of the Ag NRs SERS substrate. Vacuum, 2022, 196, 110734.	1.6	4
2	Growth and characterization of NiWO nanorod films prepared by reactive magnetron co-sputtering with oblique angle deposition. Vacuum, 2022, 196, 110777.	1.6	2
3	Preparation of 2D Periodic Nanopatterned Arrays through Vertical Vibration-Assisted Convective Deposition for Application in Metal-Enhanced Fluorescence. Processes, 2022, 10, 202.	1.3	1
4	Development of cost-effective fabrication process for on-site methamphetamine detection by adsorbable SERS substrate. Optical Materials, 2022, 124, 111988.	1.7	2
5	Phase evolution in annealed Ni-doped WO3 nanorod films prepared via a glancing angle deposition technique for enhanced photoelectrochemical performance. Applied Surface Science, 2022, 584, 152581.	3.1	2
6	DNA-Based Gold Nanoparticle Sensor for Bladder Cancer Detection. ACS Applied Nano Materials, 2022, 5, 985-995.	2.4	1
7	Trace-level detection and classifications of pentaerythritol tetranitrate via geometrically optimized film-based Au/ZnO SERS sensors. Sensors and Actuators B: Chemical, 2022, 366, 131986.	4.0	9
8	Optical and structural properties of WO3 nanostructure films prepared by oblique angle deposition. Materials Today: Proceedings, 2022, 65, 2322-2326.	0.9	1
9	Investigation of omnidirectional transmittance related to ITO nanorods orientation for optical applications. Optical Materials, 2022, 129, 112439.	1.7	1
10	An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121598.	2.0	7
11	Aliovalent Sc and Li co-doping boosts the performance of p-type NiO sensor. Sensors and Actuators B: Chemical, 2021, 326, 128834.	4.0	21
12	Comparative investigations of DCMS/HiPIMS reactively sputtered WO3 thin films for photo-electrochemical efficiency enhancements. Vacuum, 2021, 185, 109978.	1.6	13
13	Hydrolysis corrosion of alumina thin films produced by pulse DC reactive magnetron sputtering at various operating pressures. Ceramics International, 2021, 47, 9691-9700.	2.3	5
14	Facile fabrication and optical characterization of nanoflake aluminum oxide film with high broadband and omnidirectional transmittance enhancement. Optical Materials, 2021, 111, 110567.	1.7	8
15	Effect of deposition time on nanocolumnar TiZrN films grown by reactive magnetron Co-sputtering with the OAD technique. Materiali in Tehnologije, 2021, 55, 65-70.	0.3	5
16	Room temperature deposition of crystalline HfN thin films by DC reactive magnetron sputtering. Materials Today: Proceedings, 2021, 47, 3468-3470.	0.9	2
17	Annealed plasmonic Ag nanoparticle films for surface enhanced fluorescence substrate. Materials Today: Proceedings, 2021, 47, 3492-3492.	0.9	1
18	ZnO Nanorods Grown on Heterogenous Ag Seed Layers for Single-Cell Fluorescence Bioassays. ACS Applied Nano Materials, 2021, 4, 7384-7394.	2.4	1

#	Article	IF	Citations
19	Surface-enhanced Raman scattering activities and recyclability of Ag-incorporated WO3 nanofiber-based substrates. Vibrational Spectroscopy, 2021, 115, 103276.	1.2	9
20	Morphology-controlled fabrication of nanostructured WO3 thin films by magnetron sputtering with glancing angle deposition for enhanced efficiency photo-electrochemical water splitting. Ceramics International, 2021, 47, 34455-34462.	2.3	20
21	Tin(II) thiocyanate Sn(SCN)2 as an ultrathin anode interlayer in organic photovoltaics. Applied Physics Letters, 2021, 119, 063301.	1.5	4
22	A Nanocolumnar Tantalum Oxide-Guided Mode Resonance Sensor for Volatile Organic Compounds. ACS Applied Nano Materials, 2021, 4, 9665-9672.	2.4	3
23	Energy-saving synthesis and \hat{l}^2 -phase enhancement of Cu2Se thermoelectric materials via the microwave hybrid heating technique. Journal of Alloys and Compounds, 2021, 879, 160513.	2.8	9
24	Work function alteration of the porous indium tin oxide nanorods film by electron beam irradiation technique. Radiation Physics and Chemistry, 2021, 188, 109664.	1.4	7
25	Improving the thermoelectric properties of thick Sb2Te3 film via Cu doping and annealing deposited by DC magnetron sputtering using a mosaic target. Current Applied Physics, 2021, 31, 7-15.	1.1	10
26	Characterization broadband omnidirectional antireflection ITO nanorod films coating. Optical Materials, 2021, 121, 111545.	1.7	11
27	Nanostructure optimization of Zr-W-Ti metallic glass thin films via multitarget co-sputtering with oblique angle deposition approach. Journal of Alloys and Compounds, 2021, 886, 161265.	2.8	8
28	Measurement of negative ion fluxes during DC reactive magnetron sputtering of Ti in Ar/O2 atmosphere using a magnetic-filtering probe. Vacuum, 2021, 194, 110549 .	1.6	5
29	Effect of Sputtered Pressure on Au Nanoparticles Formation Decorated ZnO Nanowire Arrays. Materials Today: Proceedings, 2021, 43, 2624-2628.	0.9	1
30	SURFACE-ENHANCED RAMAN SCATTERING ACTIVITY OF PLASMONIC Ag–Ti NANOISLAND FILMS. Surface Review and Letters, 2021, 28, .	0.5	0
31	Modification of polyvinyl chloride membranes for mycotoxins detection. Sensing and Bio-Sensing Research, 2021, 34, 100460.	2.2	2
32	Growth of highly uniform size-distribution ZnO NR arrays on sputtered ZnO thin film via hydrothermal with PMMA template assisted. Materials Science in Semiconductor Processing, 2020, 105, 104736.	1.9	4
33	3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments. Sensors and Actuators B: Chemical, 2020, 304, 127327.	4.0	50
34	Improved discrimination of pen inks on document by surface-enhanced Raman substrate fabricated by magnetron sputtering. Optik, 2020, 201, 163499.	1.4	5
35	Transfer of P-type to N-type Thermoelectric Properties of Ag-Sb-Te Thin Film Through Temperature Annealing and Its Electrical Power Generation. Journal of Electronic Materials, 2020, 49, 572-577.	1.0	5
36	Effect of substrates on thermoelectric properties of Ag–Sb–Te thin films within the temperature annealing. Physica B: Condensed Matter, 2020, 582, 411977.	1.3	8

#	Article	IF	CITATIONS
37	Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications. Optical Materials, 2020, 107, 110018.	1.7	43
38	Preparation of PTFE-coated SiO2 nanorod films for self-cleaning application. AIP Conference Proceedings, 2020, , .	0.3	3
39	Effect of post annealed treatment on HfN thin films prepared by DC reactive magnetron sputtering. AIP Conference Proceedings, 2020, , .	0.3	5
40	Analysis of the properties of molybdenum and sodium-doped molybdenum thin films for back contact of CIGS solar cells. AIP Conference Proceedings, 2020, , .	0.3	0
41	Rapid thermal annealing induced the c-axis (00 l) preferred orientation and the p-type thermoelectric properties of Bi-Sb-Te thin films. Thin Solid Films, 2020, 706, 138094.	0.8	5
42	Synergistic Effect of Nickel Nanoparticles and Carbon Nanotubes Buckypaper for Enhancement of Microwave Shielding Properties. Solid State Phenomena, 2020, 302, 71-78.	0.3	0
43	Phase Evolution, Microstructure, Electrical, and Magnetic Properties of Bi 0.5 (Na 0.68 K 0.22 Li 0.10) 0.5 TiO 3 Ceramics with Fe 3+ Substitution. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900983.	0.8	6
44	X-ray absorption study of the local structure of Mg in hydroxyapatites thin films deposited by RF magnetron Co-Sputtering. Radiation Physics and Chemistry, 2020, 172, 108788.	1.4	3
45	Au-Coated PDMS grating for SERS substrate: Comparison of two different grating depths. Journal of Physics: Conference Series, 2020, 1428, 012036.	0.3	0
46	Spatial elemental investigations in nanostructured alloyed Ag/Au SERS substrates by magnetron sputtering oblique-angle co-deposition towards increased performance and shelf life. Applied Surface Science, 2020, 513, 145748.	3.1	11
47	The Simulation of a Surface Plasmon Resonance Metallic Grating for Maximizing THz Sensitivity in Refractive Index Sensor Application. International Journal of Optics, 2020, 2020, 1-8.	0.6	14
48	Modification of polyvinyl chloride ion-selective membrane for nitrate ISFET sensors. Applied Surface Science, 2020, 512, 145664.	3.1	8
49	Sensing layer combination of vertically aligned ZnO nanorods and graphene oxide for ultrahigh sensitivity IDE capacitive humidity sensor. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 965-975.	0.8	8
50	Effect of annealing temperature on the structural and magnetic properties of CeO2 thin films. Thin Solid Films, 2020, 704, 138001.	0.8	16
51	Effect of oxygen plasma treatment on ITO nanorods films prepared by glancing angle deposition. AIP Conference Proceedings, 2020, , .	0.3	1
52	The effect of thickness on the properties of Zr-Hf-N thin films prepared by reactive co-magnetron sputtering. AIP Conference Proceedings, 2020, , .	0.3	7
53	Influence of an Annealing Temperature in a Vacuum Atmosphere on the Physical Properties of Indium Tin Oxide Nanorod Films. Journal of Nanoscience and Nanotechnology, 2020, 20, 5006-5013.	0.9	0
54	Surface enhanced fluorescence of Ag nanostructure films prepared by DC magnetron sputtering. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
55	Optimization of sputtered Au film on grating structure as SERS substrate for detection of pesticide. Journal of Physics: Conference Series, 2020, 1428, 012035.	0.3	O
56	Effect of Sputtering Power on Optical Properties of Nickel Oxide Electrochromic Thin Films. Ukrainian Journal of Physics, 2020, 65, 973.	0.1	1
57	Detection and classification of volatile fatty acids using surfaceâ€enhanced Raman scattering and density functional theory calculations. Journal of Raman Spectroscopy, 2019, 50, 1817-1828.	1.2	9
58	Surface oxygen vacancy defect engineering of p-CuAlO ₂ <i>via</i> Ar&H ₂ plasma treatment for enhancing VOCs sensing performances. Chemical Communications, 2019, 55, 11691-11694.	2.2	28
59	Spectroscopic study on amorphous tantalum oxynitride thin films prepared by reactive gas-timing RF magnetron sputtering. Applied Surface Science, 2019, 492, 99-107.	3.1	10
60	Spectroscopic Analyses of Sputtered Aluminum Oxide Films with Oxygen Plasma Treatments. Materials Science Forum, 2019, 947, 96-100.	0.3	0
61	Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers. Current Applied Physics, 2019, 19, 894-901.	1.1	25
62	Observations of the initial stages on reactive gas-timing sputtered TaO thin films by dynamic in situ spectroscopic ellipsometery. Optical Materials, 2019, 92, 223-232.	1.7	9
63	Wastewater biofilm formation on self-assembled monolayer surfaces using elastomeric flow cells. Anaerobe, 2019, 57, 11-18.	1.0	4
64	Comparing the performance of transparent, conductive ZnO/Ag/ZnO thin films that have an interlayer coating formed by either DC magnetron sputtering or HiPIMS. Materials Research Express, 2019, 6, 126410.	0.8	4
65	Ultrahigh Sensitivity And Linearity Humidity Sensor Base On Vertical Alignment Of ZnO Nanorods Sensing Layer., 2019,,.		0
66	Effect of Ag mixing in thermoelectric Ge2Sb2Te5 thin films. Materials Letters, 2019, 234, 229-232.	1.3	10
67	Effects of thermal treatment on hydrophilicity and corrosion resistance of Ti surface. Surface and Interface Analysis, 2019, 51, 308-315.	0.8	2
68	Study of Annealing Influence on Basic Properties of Indium Tin Oxide Nanorod Films Deposited Using Glancing Angle Ion-Assisted Electron Beam Evaporation. Journal of Nanoscience and Nanotechnology, 2019, 19, 1432-1438.	0.9	0
69	Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane–Al Structure for Enhanced Triboelectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 6433-6440.	4.0	32
70	Tuberculosis determination using SERS and chemometric methods. Tuberculosis, 2018, 108, 195-200.	0.8	33
71	Improved NO2 sensing performance of electrospun WO3 nanofibers with silver doping. Sensors and Actuators B: Chemical, 2018, 255, 1831-1840.	4.0	91
72	Preparation and characterization of CrN thin film by DC reactive magnetron sputtering. Materials Today: Proceedings, 2018, 5, 15224-15227.	0.9	12

#	Article	IF	Citations
73	Grazing Incidence X-Ray Diffraction using Synchrotron Light at SLRI. Journal of Physics: Conference Series, 2018, 1144, 012052.	0.3	2
74	Improved the chrage transfer for highly efficient photoelectrochemical water oxidation: the case of WO 3 and BiVO 4. Materials Today: Proceedings, 2018, 5, 13874-13878.	0.9	2
75	Characterization of tungsten oxide nanorods fabricated by reactive DC magnetron sputtering with GLAD technique. Materials Today: Proceedings, 2018, 5, 13886-13890.	0.9	0
76	Influence on distance between substrate and target on the properties of CuO thin film prepared by DC reactive magnetron sputtering. Materials Today: Proceedings, 2018, 5, 13900-13903.	0.9	4
77	Low-temperature hydrothermal synthesis single-crystal ZnO nanowire for gas sensor application. Materials Today: Proceedings, 2018, 5, 15213-15217.	0.9	4
78	Comparative study of local structure for sputter deposited nitrogen doped zinc oxide thin films. Materials Today: Proceedings, 2018, 5, 11153-11158.	0.9	0
79	Fabrication of omnidirectional anti-reflection and super hydrophilicity SiO 2 nanorods by oblique angle deposition. Materials Today: Proceedings, 2018, 5, 14140-14144.	0.9	2
80	DC reactive sputter deposition of CuO thin films at different operating pressures. Materials Today: Proceedings, 2018, 5, 15166-15169.	0.9	1
81	Surface roughness of aluminum oxide thin films deposited by DC and RF reactive magnetron sputtering. Materials Today: Proceedings, 2018, 5, 15228-15232.	0.9	2
82	Glancing-angle pulsed dc magnetron sputtered AZO thin films for TCO applications. Materials Today: Proceedings, 2018, 5, 14166-14171.	0.9	4
83	Field emission property of vertically aligned nitrogen-doped multi-walled carbon nanotubes produced by chemical vapor deposition. Materials Today: Proceedings, 2018, 5, 14965-14969.	0.9	2
84	Superhydrophobic and antireflective surface of nanostructures fabricated by CF4 plasma etching. Materials Today: Proceedings, 2018, 5, 13879-13885.	0.9	4
85	Influence of film thickness on microstructural and electrical properties of copper oxide thin film prepared by magnetron sputtering. Materials Today: Proceedings, 2018, 5, 15198-15202.	0.9	2
86	Deposition of CuO thin film prepared by DC reactive magnetron sputtering. Materials Today: Proceedings, 2018, 5, 13896-13899.	0.9	6
87	Hydrothermal synthesis of photo-induced hydrophilic ZnO nanorods. Materials Today: Proceedings, 2018, 5, 14121-14125.	0.9	2
88	Effect of annealing treatment on sputtered copper oxide thin film. Materials Today: Proceedings, 2018, 5, 15170-15173.	0.9	3
89	Controllable decoration of Au NPs on zinc oxide nanorods template by magnetron sputtering technique for reusable-SERS active surface enhancement. AIP Conference Proceedings, 2018, , .	0.3	2
90	Growth of Ag/SnO2 thin film by DC magnetron sputtering deposition intended for low emissivity application. AIP Conference Proceedings, 2018, , .	0.3	1

#	Article	IF	Citations
91	Preparation and characterization of tungsten trioxide nanoplates by low cost acid treatment method. AIP Conference Proceedings, 2018, , .	0.3	0
92	Omnidirectional antireflection and electrochromic properties of WO3 nanorods prepared by oblique angle deposition. AIP Conference Proceedings, 2018, , .	0.3	1
93	The fabrication of PDMS polymer templates on aluminum sheet by laser marking in micro-nano structure scale for surface-enhanced Raman spectroscopy (SERS). AIP Conference Proceedings, 2018, , .	0.3	1
94	Transparent conductive nanocolumnar AZO film coating by glancing angle deposition technique. AIP Conference Proceedings, 2018, , .	0.3	0
95	Facile method for decorations of Au nanoparticles on TiO2 nanorod arrays toward high-performance recyclable SERS substrates. Sensors and Actuators B: Chemical, 2018, 277, 102-113.	4.0	38
96	Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement. Optics and Laser Technology, 2018, 106, 410-416.	2.2	4
97	Investigation of silver nanorods as reusable SERS-active substrates for trace level detection of 2-MIB volatile organic compound. Sensors and Actuators B: Chemical, 2018, 271, 122-127.	4.0	29
98	Microstructural control by substrate heating in Pulse-DC sputtering induced thermoelectric Ge2Sb2Te5 thin films. Journal of Alloys and Compounds, 2018, 763, 430-435.	2.8	12
99	REUSABILITY OF SERS-ACTIVE SURFACES BASED ON GOLD-DECORATED HEXAGONAL ZnO NANOROD USED ZINC SHEET AS TEMPLATE. Surface Review and Letters, 2018, 25, 1840004.	0.5	6
100	GROWTH TIME DEPENDENCE ON PHOTOELECTROCHEMICAL PROPERTY OF ZINC OXIDE NANORODS PREPARED BY HYDROTHERMAL SYNTHESIS. Surface Review and Letters, 2018, 25, 1840001.	0.5	3
101	A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition. , 2018, , .		1
102	Omnidirectional anti-reflection properties of vertically align SiO2 nanorod films prepared by electron beam evaporation with glancing angle deposition. , 2018, , .		0
103	High-performance Electrochemical Energy Storage Electrodes Based on Nickel Oxide-coated Nickel Foam Prepared by Sparking Method. Electrochimica Acta, 2017, 238, 298-309.	2.6	33
104	An inverted gapped-target sputter magnetron for the deposition of thin ferromagnetic films. Vacuum, 2017, 141, 41-48.	1.6	4
105	Selective area growth behaviour of ZnO nanorod arrays in hydrothermal synthesis. Journal of Physics: Conference Series, 2017, 901, 012100.	0.3	0
106	Preparation of vertically aligned ZnO nanorods on AZO thin film by hydrothermal method. Materials Today: Proceedings, 2017, 4, 6200-6204.	0.9	3
107	Enhanced transmission based on vertically aligned ITO NRs deposited by Ion assisted electron beam evaporation with glancing angle deposition technique. Materials Today: Proceedings, 2017, 4, 6060-6064.	0.9	4
108	Influence of oxygen flow rate on electrochromic property of WO 3 nanorods prepared by glancing reactive magnetron sputtering. Materials Today: Proceedings, 2017, 4, 6218-6223.	0.9	8

#	Article	IF	CITATIONS
109	The effects of the argon plasma treatments on transparent conductive aluminum-dope zinc oxide thin films prepared by the pulsed DC magnetron sputtering. Materials Today: Proceedings, 2017, 4, 6248-6253.	0.9	8
110	Preparation and Characterization of ITO Nanostructure by Oblique Angle Deposition. Materials Today: Proceedings, 2017, 4, 6284-6288.	0.9	2
111	Preparation and surface wettability of nanostructure TiO 2 films. Materials Today: Proceedings, 2017, 4, 6331-6335.	0.9	3
112	Effects of oblique angle deposition on optical and morphological properties of WO 3 nanorod films for electrochromic application. Materials Today: Proceedings, 2017, 4, 6423-6429.	0.9	8
113	Wetting characteristic of nanoporous aluminum oxide films. Materials Today: Proceedings, 2017, 4, 6615-6619.	0.9	3
114	Investigation of optical characteristics of the evaporated Ta 2 O 5 thin films based on ellipsometry and spectroscopy. Materials Today: Proceedings, 2017, 4, 6365-6371.	0.9	10
115	Effects of sputtering power toward the Al-doped ZnO thin Film prepared by pulsed DC magnetron sputtering. Materials Today: Proceedings, 2017, 4, 6466-6471.	0.9	10
116	[Bi]:[Te] Control, Structural and Thermoelectric Properties of Flexible Bi x Te y Thin Films Prepared by RF Magnetron Sputtering at Different Sputtering Pressures. Journal of Electronic Materials, 2017, 46, 6444-6450.	1.0	51
117	Phase formation polycrystalline vanadium oxide via thermal annealing process under controlled nitrogen pressure. Journal of Physics: Conference Series, 2017, 901, 012162.	0.3	1
118	A study of thickness dependence on omnidirectional anti-reflection SiO 2 nanorod array fabricated by oblique angle deposition. Materials Today: Proceedings, 2017, 4, 6037-6042.	0.9	4
119	Influence of nitrogen flow rates on iron nitride thin films prepared by DC reactive magnetron sputtering. Materials Today: Proceedings, 2017, 4, 6173-6177.	0.9	4
120	Optical characterizations of tungsten oxide nanosculptures fabricated by oblique-angle deposition. Materials Today: Proceedings, 2017, 4, 6212-6217.	0.9	1
121	Influence of seed layer thickness on well-aligned ZnO nanorods via hydrothermal method. Materials Today: Proceedings, 2017, 4, 6336-6341.	0.9	14
122	Spectroscopic ellipsometry investigation of microcrystalline fractions in p-type hydrogenated microcrystalline silicon oxide (p- $\hat{l}\frac{1}{4}$ c-SiO x :H) ultra-thin films. Materials Science in Semiconductor Processing, 2017, 68, 327-333.	1.9	1
123	Detection of methamphetamine / amphetamine in human urine based on surface - enhanced Raman spectroscopy and acidulation treatments. Sensors and Actuators B: Chemical, 2017, 239, 139-146.	4.0	56
124	Engineered omnidirectional antireflection ITO nanorod films with super hydrophobic surface via glancing-angle ion-assisted electron-beam evaporation deposition. Current Applied Physics, 2017, 17, 222-229.	1.1	28
125	Growth of Nanostructure Silver Films by DC Magnetron Sputtering for Surface Enhanced Raman Scattering Substrate. Key Engineering Materials, 2016, 675-676, 285-288.	0.4	1
126	Fabrication and Characterization of Antibacterial Tantalum Oxide Thin Films Deposited by Reactive Magnetron Sputtering. Key Engineering Materials, 2016, 675-676, 185-188.	0.4	1

#	Article	IF	Citations
127	Effect of Annealing Temperature on Electrochromic Properties of Tantalum Oxide Thin Films Deposited by DC Reactive Magnetron. Key Engineering Materials, 2016, 675-676, 221-224.	0.4	0
128	Growth of Nanostructure TiO ₂ Films by Glancing Angle Deposition. Key Engineering Materials, 2016, 675-676, 289-292.	0.4	1
129	Crucial role of reactive pulse-gas on a sputtered Zn ₃ N ₂ thin film formation. RSC Advances, 2016, 6, 94905-94910.	1.7	10
130	Deposition of Transparent Niobium Oxide Thin Film by DC Reactive Magnetron Sputtering. Key Engineering Materials, 2016, 675-676, 217-220.	0.4	0
131	Influence of Post-Deposition Annealing on Structure and Optical Characteristics of Niobium Oxide Thin Films. Key Engineering Materials, 2016, 675-676, 245-248.	0.4	0
132	Optical band engineering of metal-oxynitride based on tantalum oxide thin film fabricated via reactive gas-timing RF magnetron sputtering. Surface and Coatings Technology, 2016, 306, 346-350.	2.2	13
133	Hydrothermal Growth of ZnO Nanorods along the Ultra-Thin ZnO Seed Layer Prepared by Magnetron Sputtering. Key Engineering Materials, 2016, 675-676, 130-133.	0.4	0
134	Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate. Scientific Reports, 2016, 6, 23733.	1.6	83
135	Power Factor of Germanium Antimony Tellurium Thin Film on Al ₂ O ₃ Ceramic Substrate Deposited by Pulsed–DC <i></i> Magnetron Sputtering. Key Engineering Materials, 2016, 675-676, 257-260.	0.4	1
136	Power factor investigation of RF magnetron sputtered c-GeSbTe thin film. Surface and Coatings Technology, 2016, 291, 15-20.	2.2	10
137	Texture orientation of silver thin films grown via gas-timing radio frequency magnetron sputtering and their SERS activity. RSC Advances, 2016, 6, 7661-7667.	1.7	11
138	Affected annealing time treatment on preferred orientation and thermoelectric properties of h–GeSbTe0.5 alloy thin film. Current Applied Physics, 2016, 16, 305-310.	1.1	3
139	Effect of Oxygen Flow Rate and Post Annealing on Vanadium Oxide Thin Films Prepared by DC Pulse Magnetron Sputtering. Key Engineering Materials, 2016, 675-676, 233-236.	0.4	1
140	Fabrication and Ethanol Sensing Characterization of Tin Oxide Nanorods Prepared by Glancing Angle Deposition Technique. Key Engineering Materials, 2016, 675-676, 163-166.	0.4	3
141	Influence of Rapid Thermal Annealing on Structural, Optical and Electrical Properties of ITO Thin Films. Key Engineering Materials, 2016, 675-676, 249-252.	0.4	1
142	Ultra-sensitive NO 2 sensor based on vertically aligned SnO 2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique. Sensors and Actuators B: Chemical, 2016, 223, 936-945.	4.0	57
143	Influence of Various Precursor Compositions and Substrate Angles on ZnO Nanorod Morphology Growth by Aqueous Solution Method. Journal of Mathematical and Fundamental Sciences, 2016, 48, 48-54.	0.3	3
144	Applications of surface-enhanced Raman scattering (SERS) substrate., 2015,,.		2

#	Article	IF	Citations
145	Thermoelectric properties of c -GeSb 0.75 Te 0.5 to h -GeSbTe 0.5 thin films through annealing treatment effects. Journal of Alloys and Compounds, 2015, 649, 380-386.	2.8	23
146	Morphology-controlled seed-assisted hydrothermal ZnO nanowires via critical concentration for nucleation and their photoluminescence properties. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 394-400.	0.8	14
147	ÂSilicon Nitride Thin Films Deposited By Reactive Gas-timing Magnetron Sputtering For Protective Coating Applications. Advanced Materials Letters, 2015, 6, 554-559.	0.3	9
148	Fabrication of artificial gemstones from glasses: From waste to jewelry. , 2014, , .		2
149	Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications. , 2014 , , .		9
150	Ultrasensitive Hydrogen Sensor Based on Pt-Decorated WO ₃ Nanorods Prepared by Glancing-Angle dc Magnetron Sputtering. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22051-22060.	4.0	116
151	Up- and Downconversion Luminescence Properties of Nd3+lons Doped in Bi2O3–BaO–B2O3Glass System. Advances in Materials Science and Engineering, 2014, 2014, 1-5.	1.0	6
152	Preparation of WO ₃ Nanorods by Glancing Angle DC Reactive Magnetron Sputtering Deposition for NO ₂ Gas Sensing Application. Advanced Materials Research, 2013, 770, 267-270.	0.3	0
153	Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy. Forensic Science International, 2013, 233, 174-178.	1.3	47
154	Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering. Sensors and Actuators B: Chemical, 2013, 181, 388-394.	4.0	45
155	NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering. Sensors and Actuators B: Chemical, 2013, 176, 685-691.	4.0	93
156	Shelf time effect on SERS effectiveness of silver nanorod prepared by OAD technique. Vacuum, 2013, 88, 23-27.	1.6	38
157	Tantalum oxide bio-photonics thin film grown by Gas-timing innovation technique. Proceedings of SPIE, 2013, , .	0.8	0
158	Effect of Sputtering Power on Physical Properties and Electrochromic Performance of Sputtered-WO ₃ Thin Films. Advanced Materials Research, 2013, 802, 69-73.	0.3	1
159	Fabrication and Characterization of Tin Oxide Nanorods Prepared by Glancing Angle DC Reactive Magnetron Sputtering (sup) Advanced Materials Research, 2013, 770, 189-192.	0.3	0
160	Preparation of Titanium Dioxide Films on Water Wheel for Domestic Wastewater Treatment. Advanced Materials Research, 2013, 770, 386-389.	0.3	0
161	Annealing Temperature Dependent on Microstructure and Ethanol Gas Sensing Properties of TiO ₂ Thin Films. Advanced Materials Research, 2013, 770, 213-216.	0.3	0
162	Structural, Optical and Anti-Bacterial Properties of TiO ₂ Thin Films Prepared by DC Reactive Magnetron Sputtering. Advanced Materials Research, 2013, 770, 283-286.	0.3	0

#	Article	IF	Citations
163	Enhanced Deposition Rate of Photo-Induce Hydrophilic TiO ₂ Thin Films Prepared by Pulsed DC Reactive Magnetron Sputtering. Advanced Materials Research, 2013, 770, 271-274.	0.3	O
164	Investigation of Inhomogeneity of TiO ₂ Thin Films Using Spectroscopic Ellipsometry. Journal of Physics: Conference Series, 2013, 417, 012007.	0.3	5
165	Switching Properties of Titanium Dioxide Nanowire Memristor. Japanese Journal of Applied Physics, 2012, 51, 11PE09.	0.8	10
166	Facile and scalable patterning of sublithographic scale uniform nanowires by ultra-thin AAO free-standing membrane. RSC Advances, 2012, 2, 10618.	1.7	22
167	Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides. Nano Letters, 2012, 12, 5684-5690.	4.5	40
168	Oxygen Partial Pressure Dependence of the Properties of TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering. Procedia Engineering, 2012, 32, 676-682.	1.2	45
169	Determination of Optical and Physical Properties of ZrO2 Films by Spectroscopic Ellipsometry. Procedia Engineering, 2012, 32, 745-751.	1.2	29
170	Electrochromic Property Dependent on Oxygen Gas Flow Rate and Films Thickness of Sputtered WO3 Films. Procedia Engineering, 2012, 32, 752-758.	1.2	28
171	Hydrophilic Property of TiO2 Films Sputtered on Glass/ITO for Self Cleaning Glass and Heat Mirror Application. Procedia Engineering, 2012, 32, 780-786.	1.2	21
172	Switching Properties of Titanium Dioxide Nanowire Memristor. Japanese Journal of Applied Physics, 2012, 51, 11PE09.	0.8	13
173	Structural, optical and hydrophilic properties of nanocrystalline TiO2 ultra-thin films prepared by pulsed dc reactive magnetron sputtering. Journal of Alloys and Compounds, 2011, 509, 4520-4524.	2.8	24
174	Proton conductivity of Y-doped BaZrO3: Pellets and thin films. Solid State Sciences, 2011, 13, 1429-1437.	1.5	33
175	Characterization of inhomogeneity in TiO2 thin films prepared by pulsed dc reactive magnetron sputtering. Thin Solid Films, 2011, 520, 272-279.	0.8	25
176	Determination of the Thickness and Optical Constants of ZrO2 by Spectroscopic Ellipsometry and Spectrophotometric Method. Procedia Engineering, 2011, 8, 223-227.	1.2	6
177	Study on transport pathway in oxide nanowire growth by using spacing-controlled regular array. Applied Physics Letters, 2011, 99, 193105.	1.5	20
178	Portable surface-enhanced Raman spectroscopy for insecticide detection using silver nanorod film fabricated by magnetron sputtering. Proceedings of SPIE, 2011, , .	0.8	6
179	Designs and investigations of anti-glare blue-tint side-view car mirrors. Materials & Design, 2010, 31, 3151-3158.	5.1	13
180	Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate. Thin Solid Films, 2010, 518, 7128-7132.	0.8	28

#	Article	IF	Citations
181	Surface-enhanced Raman scattering substrate of silver nanoparticles depositing on AAO template fabricated by magnetron sputtering. Vacuum, 2010, 84, 1415-1418.	1.6	64
182	Fabrication and Characterization of Hydrophilic TiO ₂ Thin Films on Unheated Substrates Prepared by Pulsed DC Reactive Magnetron Sputtering. Journal of Nanomaterials, 2010, 2010, 1-7.	1.5	11
183	Dynamic <i>in situ</i> spectroscopic ellipsometric study in inhomogeneous TiO2 thin-film growth. Journal of Applied Physics, 2010, 108, .	1.1	22
184	Design and investigation of photo-induced super-hydrophilic materials for car mirrors. Materials & Design, 2009, 30, 3428-3435.	5.1	27
185	Vacuum and Air Annealing Effects on Properties of Indium Tin Oxide Films Prepared by Ion-Assisted Electron Beam Evaporation. Japanese Journal of Applied Physics, 2008, 47, 4692-4695.	0.8	20
186	Influence of Annealing Temperature on the Properties of Nanostructure ITO Thin Films Prepared by Ion-Assisted Electron Beam Evaporation. Advanced Materials Research, 2008, 55-57, 373-376.	0.3	3
187	A Spectroscopic Ellipsometry Study of TiO 2 Thin Films Prepared by dc Reactive Magnetron Sputtering: Annealing Temperature Effect. Chinese Physics Letters, 2007, 24, 1505-1508.	1.3	26
188	Photo-Induced Superhydrophilic TiO ₂ Films Deposited by DC Reactive Magnetron Sputtering at Room Temperature. Advanced Materials Research, 0, 55-57, 441-444.	0.3	4
189	Effect of Thickness on Microstructure, Electrical and Optical Properties of Zirconium Nitride Thin Film Prepared by DC Reactive Magnetron Sputtering at Room Temperature. Advanced Materials Research, 0, 770, 217-220.	0.3	1
190	Investigation of Electrochromic WO ₃ Nanorods Prepared by DĐ; Reactive Magnetron Sputtering with GLAD Technique. Advanced Materials Research, 0, 770, 136-139.	0.3	0
191	Effect of Annealing Temperature on Structure and Optical Properties of Ta ₂ O ₅ Thin Films Prepared by DC Magnetron Sputtering. Advanced Materials Research, 0, 770, 149-152.	0.3	6
192	Fabrication and Characterization of Antibacterial Ag-TiO ₂ Thin Films Prepared by DC Magnetron Co-Sputtering Technique. Advanced Materials Research, 0, 770, 221-224.	0.3	5
193	Structural and Optical Properties of TiO ₂ Thin Films Prepared by Thermal Oxidation of Ti Thin Films. Advanced Materials Research, 0, 770, 225-228.	0.3	0
194	Low-Temperature Synthesis of Nanocrystalline ZnO Nanorods Arrays. Advanced Materials Research, 0, 770, 237-240.	0.3	0
195	Effects of Precursor Concentration on Hexagonal Structures of ZnO Nanorods Grown by Aqueous Solution Method. Advanced Materials Research, 0, 770, 120-123.	0.3	1
196	Effect of Operated Pressure on Anticorrosive Behavior of Ta ₂ O ₅ Thin Film Grown by D.C. Reactive Magnetron Sputtering System. Advanced Materials Research, 0, 802, 242-246.	0.3	1
197	Effects of Annealing Treatment on WO ₃ Thin Films Prepared by DC Reactive Magnetron Sputtering. Advanced Materials Research, 0, 979, 248-250.	0.3	2
198	Fabrication of Tantalum Oxide Nanorods by DC Magnetron Sputtering with Glancing Angle Deposition. Advanced Materials Research, 0, 979, 196-199.	0.3	0

#	Article	IF	CITATIONS
199	High Performance Metal Surface Coating Using Ta ₂ O ₅ Thin Film Prepared by D.C. Magnetron Sputtering. Advanced Materials Research, 0, 979, 240-243.	0.3	1
200	Effect of Emitting Current Ion Source on Structural, Optical and Electrical Properties of Nanostructured ITO Thin Films by Ion-Beam Assisted Evaporation. Advanced Materials Research, 0, 979, 263-266.	0.3	3
201	Effect of O ₂ Flow Rate on Structural and Optical Properties of Tantalum Oxide Thin Films Prepared by DC Reactive Magnetron Sputtering. Advanced Materials Research, 0, 979, 448-451.	0.3	1
202	Vertically Aligned Ag Nanorod Arrays for Trace Cypermethrin Detection. Advanced Materials Research, 0, 979, 259-262.	0.3	3
203	Influence of Sputtering Power on Structural and Optical Properties of Ta ₂ 0 ₅ Thin Films Prepared by DC Reactive Magnetron Sputtering. Advanced Materials Research, 0, 979, 431-434.	0.3	1
204	Effect of Annealing Temperature on ZnO Nanorods Prepared by Hydrothermal Process. Advanced Materials Research, 0, 979, 204-207.	0.3	0
205	Determination of Thickness and Optical Properties of Tantalum Oxide Thin Films by Spectroscopic Ellipsometry. Advanced Materials Research, 0, 979, 244-247.	0.3	3
206	Investigation on Nanostructure and Morphologies of ZnO Nanowires Prepared by Hydrothermal Method. Advanced Materials Research, 0, 979, 192-195.	0.3	0
207	Decoration of Gold Nanoparticles on TiO ₂ Thin Films for Enhanced Response of Ethanol Gas Sensors. Advanced Materials Research, 0, 979, 251-254.	0.3	4
208	Fabrication of 3D-Hybrid Nanostructure for Surface-Enhanced Raman Scattering Substrate: Effect of Applied Voltage on Porous Size of AAO Template. Advanced Materials Research, 0, 979, 255-258.	0.3	0
209	Impedance Spectroscopic Inspection Toward Sensitivity Enhancement of Ag-Doped WO ₃ Nanofiber-Based Carbon Monoxide Gas Sensor. Materials Science Forum, 0, 872, 230-234.	0.3	4
210	Enhanced Antibacterial Activity by Au Nanoparticle Decorated ZnO Nanorods. Key Engineering Materials, 0, 675-676, 113-116.	0.4	2
211	Influence of Growth Conditions on Morphology of ZnO Nanorods by Low-Temperature Hydrothermal Method. Key Engineering Materials, 0, 675-676, 53-56.	0.4	2
212	Physical Properties of Copper Films Deposited by Compact-Size Magnetron Sputtering Source with Changing Magnetic Field Strength. Key Engineering Materials, 0, 675-676, 193-196.	0.4	1
213	Development of Nanohole Array Patterned by Laser Interference Lithography Technique. Key Engineering Materials, 0, 675-676, 41-44.	0.4	0
214	Hydrothermal of ZnO Nanorod Arrays on ITO Transparent Conductive Oxide Substrate: Effect of Precursor Concentration. Key Engineering Materials, 0, 675-676, 134-137.	0.4	1
215	Optimizations of Sealing Conditions for Blank Silver Nanorod Used as SERS Substrates. Key Engineering Materials, 0, 675-676, 142-145.	0.4	0
216	Spectroscopic Ellipsometry Analyses on Plasma Treatment of Aluminium Oxide Thin Film. Key Engineering Materials, 0, 675-676, 197-200.	0.4	0

#	Article	IF	CITATIONS
217	Influence of Substrate Temperature on Deposition Rate and Optical Properties of Aluminum Oxide Thin Films Prepared by Reactive DC Sputtering Technique. Key Engineering Materials, 0, 675-676, 281-284.	0.4	0
218	Functionalization of Au Nanoparticles on ZnO Nanorods through Low-Temperature Synthesis. Key Engineering Materials, 0, 675-676, 45-48.	0.4	5
219	Vertical Alignment TiO ₂ Nanotube Based on Ti Film Prepared via Anodization Technique. Key Engineering Materials, 0, 675-676, 167-170.	0.4	0
220	Fabrication of Zinc Oxide Nanorods for Photoelectrochemical Water Splitting Application. Key Engineering Materials, 0, 675-676, 117-120.	0.4	2
221	Structural and Optical Properties of Nd ³⁺ Doped Na ₂ O-PbO-ZnO-Li ₂ O-B ₂ O _{3< Glasses System. Key Engineering Materials, 0, 675-676, 424-429.}	:/s o b>	25
222	Fabrication and Surface-Enhanced Raman Scattering Activities of Cross-Linked Polyvinyl Alcohol/Ag Nanofibers. Key Engineering Materials, 0, 801, 139-144.	0.4	1
223	Optical Absorption and Photoconversion Characteristics of WO ₃ Nanofiber Photoanodes Prepared by Electrospinning with Different Calcination Temperatures. Solid State Phenomena, 0, 324, 103-108.	0.3	O
224	Highly Sensitive H ₂ Sensors Based on Pd- and PdO-Decorated TiO ₂ Thin Films at Low-Temperature Operation. Key Engineering Materials, 0, 675-676, 277-280.	0.4	7
225	Effect of Anodizing Voltage on Anodic Titanium Dioxide (ATO) Growth Based on an Ethylene Glycol Solution Containing NH ₄ F. Materials Science Forum, 0, 872, 147-151.	0.3	0