Juan P Fuenzalida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alginate beads as a highly versatile test-sample for optoacoustic imaging. Photoacoustics, 2022, 25, 100301.	7.8	2
2	Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nature Biotechnology, 2022, 40, 598-605.	17.5	23
3	Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors. Photoacoustics, 2021, 22, 100263.	7.8	19
4	Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. Science Advances, 2020, 6, eaaz6293.	10.3	27
5	Challenging a Preconception: Optoacoustic Spectrum Differs from the Optical Absorption Spectrum of Proteins and Dyes for Molecular Imaging. Analytical Chemistry, 2020, 92, 10717-10724.	6.5	26
6	Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chemical Biology, 2019, 14, 1896-1903.	3.4	15
7	Photocontrollable Proteins for Optoacoustic Imaging. Analytical Chemistry, 2019, 91, 5470-5477.	6.5	14
8	Light-Responsive Size of Self-Assembled Spiropyran–Lysozyme Nanoparticles with Enzymatic Function. Biomacromolecules, 2019, 20, 979-991.	5.4	22
9	Amplification of photoacoustic effect in bimodal polymer particles by self-quenching of indocyanine green. Biomedical Optics Express, 2019, 10, 4775.	2.9	28
10	Metalloporphyrin–polyelectrolyte assemblies in aqueous solution: Influence of the metal center and the polyelectrolyte architecture. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 484-500.	2.1	6
11	Crystal structure of a biliverdin-bound phycobiliprotein: Interdependence of oligomerization and chromophorylation. Journal of Structural Biology, 2018, 204, 519-522.	2.8	12
12	Characterization of Reversibly Switchable Fluorescent Proteins in Optoacoustic Imaging. Analytical Chemistry, 2018, 90, 10527-10535.	6.5	24
13	Functional Supramolecular Porphyrin–Dendrimer Assemblies for Light Harvesting and Photocatalysis. Macromolecules, 2017, 50, 3464-3475.	4.8	38
14	Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain. Scientific Reports, 2017, 7, 44115.	3.3	17
15	New insights into the nature of the Cibacron brilliant red 3B-A – Chitosan interaction. Pure and Applied Chemistry, 2016, 88, 891-904.	1.9	7
16	On the role of alginate structure in complexing with lysozyme andÂapplication for enzyme delivery. Food Hydrocolloids, 2016, 53, 239-248.	10.7	48
17	Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin. Biomacromolecules, 2015, 16, 924-935.	5.4	85
18	Polysaccharide-Protein Nanoassemblies: Novel Soft Materials for Biomedical and Biotechnological Applications. Current Protein and Peptide Science, 2015, 16, 89-99.	1.4	24

Juan P Fuenzalida

#	Article	IF	CITATIONS
19	Structure of Chitosan Determines Its Interactions with Mucin. Biomacromolecules, 2014, 15, 3550-3558.	5.4	134
20	Immobilization of Hydrophilic Low Molecular-Weight Molecules in Nanoparticles of Chitosan/Poly(sodium 4-styrenesulfonate) Assisted by Aromatic–Aromatic Interactions. Journal of Physical Chemistry B, 2014, 118, 9782-9791.	2.6	25
21	Affinity Protein-Based FRET Tools for Cellular Tracking of Chitosan Nanoparticles and Determination of the Polymer Degree of Acetylation. Biomacromolecules, 2014, 15, 2532-2539.	5.4	14
22	Different Models on Binding of Aromatic Counterions to Polyelectrolytes. Molecular Crystals and Liquid Crystals, 2010, 522, 136/[436]-147/[447].	0.9	8
23	Comparative Study of the Self-Aggregation of Rhodamine 6G in the Presence of Poly(sodium) Tj ETQq1 1 0.7843	814 rgBT /0	Overlock 10
	Poly(styrene- <i>alt</i> -maleic acid), and Poly(sodium acrylate). Journal of Physical Chemistry B, 2010,	2.6	45