Toni Darville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decomposition of Variation of Mixed Variables by a Latent Mixed Gaussian Copula Model. Biometrics, 2023, 79, 1187-1200.	1.4	1
2	Reduced Endometrial Ascension and Enhanced Reinfection Associated With Immunoglobulin G Antibodies to Specific <i>Chlamydia trachomatis</i> Proteins in Women at Risk for Chlamydia. Journal of Infectious Diseases, 2022, 225, 846-855.	4.0	5
3	Generalized multi‣NP mediation intersection–union test. Biometrics, 2022, 78, 364-375.	1.4	7
4	Diagnosis and Management of Uncomplicated <i>Chlamydia trachomatis</i> Infections in Adolescents and Adults: Summary of Evidence Reviewed for the 2021 Centers for Disease Control and Prevention Sexually Transmitted Infections Treatment Guidelines. Clinical Infectious Diseases, 2022, 74, S112-S126.	5.8	2
5	A Randomized Controlled Trial of Ceftriaxone and Doxycycline, With or Without Metronidazole, for the Treatment of Acute Pelvic Inflammatory Disease. Clinical Infectious Diseases, 2021, 72, 1181-1189.	5.8	43
6	Pelvic Inflammatory Disease Due to <i>Neisseria gonorrhoeae</i> and <i>Chlamydia trachomatis</i> : Immune Evasion Mechanisms and Pathogenic Disease Pathways. Journal of Infectious Diseases, 2021, 224, S39-S46.	4.0	28
7	Host Genetic Risk Factors for <i>Chlamydia trachomatis</i> -Related Infertility in Women. Journal of Infectious Diseases, 2021, 224, S64-S71.	4.0	4
8	Reduced Uterine Tissue Damage during Chlamydia muridarum Infection in TREM-1,3-Deficient Mice. Infection and Immunity, 2021, 89, e0007221.	2.2	2
9	Host–Pathogen Interactions of Chlamydia trachomatis in Porcine Oviduct Epithelial Cells. Pathogens, 2021, 10, 1270.	2.8	1
10	Sexually Transmitted Infections and the Urgent Need for Vaccines: A Review of Four Major Bacterial STI Pathogens. , 2020, , 625-647.		1
11	Pregnancy and fertility-related adverse outcomes associated with <i>Chlamydia trachomatis</i> infection: a global systematic review and meta-analysis. Sexually Transmitted Infections, 2020, 96, 322-329.	1.9	66
12	<i>Trichomonas vaginalis</i> , endometritis and sequelae among women with clinically suspected pelvic inflammatory disease. Sexually Transmitted Infections, 2020, 96, 436-438.	1.9	27
13	IL-11± Is Essential for Oviduct Pathology during Genital Chlamydial Infection in Mice. Journal of Immunology, 2020, 205, 3037-3049.	0.8	9
14	Inferring Regulatory Networks From Mixed Observational Data Using Directed Acyclic Graphs. Frontiers in Genetics, 2020, 11, 8.	2.3	7
15	Mucosal Vaccination with UV-Inactivated Chlamydia suis in Pre-Exposed Outbred Pigs Decreases Pathogen Load and Induces CD4 T-Cell Maturation into IFN-γ+ Effector Memory Cells. Vaccines, 2020, 8, 353.	4.4	7
16	Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infection and Immunity, 2020, 88, .	2.2	14
17	Semi-CAM: A semi-supervised deconvolution method for bulk transcriptomic data with partial marker gene information. Scientific Reports, 2020, 10, 5434.	3.3	4
18	First genital chlamydia vaccine enters in-human clinical trial. Lancet Infectious Diseases, The, 2019, 19, 1039-1040.	9.1	5

#	Article	IF	CITATIONS
19	Cervical Cytokines Associated With Chlamydia trachomatis Susceptibility and Protection. Journal of Infectious Diseases, 2019, 220, 330-339.	4.0	32
20	Antiâ€chlamydia IgG and IgA are insufficient to prevent endometrial chlamydia infection in women, and increased antiâ€chlamydia IgG is associated with enhanced risk for incident infection. American Journal of Reproductive Immunology, 2019, 81, e13103.	1.2	21
21	Susceptibility of endometrial isolates recovered from women with clinical pelvic inflammatory disease or histological endometritis to antimicrobial agents. Anaerobe, 2019, 56, 61-65.	2.1	20
22	National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward― Vaccine, 2019, 37, 7346-7354.	3.8	39
23	Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine, 2019, 37, 7289-7294.	3.8	52
24	Simultaneous profiling of sexually transmitted bacterial pathogens, microbiome, and concordant host response in cervical samples using whole transcriptome sequencing analysis. Microbial Cell, 2019, 6, 177-183.	3.2	7
25	T Cell-Independent Gamma Interferon and B Cells Cooperate To Prevent Mortality Associated with Disseminated Chlamydia muridarum Genital Tract Infection. Infection and Immunity, 2018, 86, .	2.2	18
26	Discovery of Blood Transcriptional Endotypes in Women with Pelvic Inflammatory Disease. Journal of Immunology, 2018, 200, 2941-2956.	0.8	15
27	Risk factors for <i>Mycoplasma genitalium</i> endometritis and incident infection: a secondary data analysis of the T cell Response Against Chlamydia (TRAC) Study. Sexually Transmitted Infections, 2018, 94, 414-420.	1.9	16
28	Mixed Chlamydia trachomatis Peptide Antigens Provide a Specific and Sensitive Single-Well Colorimetric Enzyme-Linked Immunosorbent Assay for Detection of Human Anti <i>-</i> C. trachomatis Antibodies. MSphere, 2018, 3, .	2.9	9
29	Gene Expression Signatures Can Aid Diagnosis of Sexually Transmitted Infection-Induced Endometritis in Women. Frontiers in Cellular and Infection Microbiology, 2018, 8, 307.	3.9	15
30	Comprehensive Molecular Serology of Human <i>Chlamydia trachomatis</i> Infections by Peptide Enzyme-Linked Immunosorbent Assays. MSphere, 2018, 3, .	2.9	16
31	Discovery of Human-Specific Immunodominant <i>Chlamydia trachomatis</i> B Cell Epitopes. MSphere, 2018, 3, .	2.9	13
32	A <i>Chlamydia</i> -Specific TCR-Transgenic Mouse Demonstrates Th1 Polyfunctionality with Enhanced Effector Function. Journal of Immunology, 2017, 199, 2845-2854.	0.8	18
33	Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease. Sexually Transmitted Diseases, 2017, 44, 36-42.	1.7	17
34	Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Current Topics in Microbiology and Immunology, 2016, 412, 217-237.	1.1	27
35	Identification of <i>Chlamydia trachomatis</i> Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection. Journal of Infectious Diseases, 2016, 214, 1884-1892.	4.0	34
36	Analysis of Factors Driving Incident and Ascending Infection and the Role of Serum Antibody in <i>Chlamydia trachomatis</i> Genital Tract Infection. Journal of Infectious Diseases, 2016, 213, 523-531.	4.0	45

#	Article	IF	CITATIONS
37	Comparable Genital Tract Infection, Pathology, and Immunity in Rhesus Macaques Inoculated with Wild-Type or Plasmid-Deficient Chlamydia trachomatis Serovar D. Infection and Immunity, 2015, 83, 4056-4067.	2.2	38
38	Cross-sectional analysis of Toll-like receptor variants and bacterial vaginosis in African–American women with pelvic inflammatory disease: TableÂ1. Sexually Transmitted Infections, 2014, 90, 563-566.	1.9	12
39	Role of Neutrophils in IL-17–Dependent Immunity to Mucosal Candidiasis. Journal of Immunology, 2014, 192, 1745-1752.	0.8	104
40	Steroids Alone or as Adjunctive Therapy with Doxycycline Fail To Improve Oviduct Damage in Mice Infected with Chlamydia muridarum. Vaccine Journal, 2014, 21, 824-830.	3.1	3
41	Frequency of Chlamydia trachomatis-specific T cell interferon-Î ³ and interleukin-17 responses in CD4-enriched peripheral blood mononuclear cells of sexually active adolescent females. Journal of Reproductive Immunology, 2014, 103, 29-37.	1.9	24
42	Chlamydia trachomatis infection may increase the risk of preeclampsia. Pregnancy Hypertension, 2013, 3, 28-33.	1.4	19
43	<scp>IL</scp> â€23 Induces <scp>IL</scp> â€22 and <scp>IL</scp> â€17 Production in Response to <i><scp>C</scp>hlamydia muridarum</i> Genital Tract Infection, but the Absence of these Cytokines does not Influence Disease Pathogenesis. American Journal of Reproductive Immunology, 2013, 70, 472-484.	1.2	31
44	Pelvic Inflammatory Disease. Sexually Transmitted Diseases, 2013, 40, 761-767.	1.7	22
45	Recognition and Treatment of Chlamydial Infections from Birth to Adolescence. Advances in Experimental Medicine and Biology, 2013, 764, 109-122.	1.6	29
46	CD4+ T Cell Expression of MyD88 Is Essential for Normal Resolution of <i>Chlamydia muridarum</i> Genital Tract Infection. Journal of Immunology, 2013, 191, 4269-4279.	0.8	15
47	Does Bacterial Vaginosis Cause Pelvic Inflammatory Disease?. Sexually Transmitted Diseases, 2013, 40, 117-122.	1.7	125
48	Variants in Toll-like Receptor 1 and 4 Genes Are Associated With Chlamydia trachomatis Among Women With Pelvic Inflammatory Disease. Journal of Infectious Diseases, 2012, 205, 603-609.	4.0	60
49	The Recall Response Induced by Genital Challenge with Chlamydia muridarum Protects the Oviduct from Pathology but Not from Reinfection. Infection and Immunity, 2012, 80, 2194-2203.	2.2	30
50	Plasmid-Cured Chlamydia caviae Activates TLR2-Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection. PLoS ONE, 2012, 7, e30747.	2.5	31
51	Microbial Correlates of Delayed Care for Pelvic Inflammatory Disease. Sexually Transmitted Diseases, 2011, 38, 434-438.	1.7	22
52	Interleukin-17 Contributes to Generation of Th1 Immunity and Neutrophil Recruitment during <i>Chlamydia muridarum</i> Genital Tract Infection but Is Not Required for Macrophage Influx or Normal Resolution of Infection. Infection and Immunity, 2011, 79, 1349-1362.	2.2	103
53	Toll-Like Receptor 2 Activation by <i>Chlamydia trachomatis</i> Is Plasmid Dependent, and Plasmid-Responsive Chromosomal Loci Are Coordinately Regulated in Response to Glucose Limitation by <i>C. trachomatis</i> but Not by <i>C. muridarum</i> . Infection and Immunity, 2011, 79, 1044-1056.	2.2	96
54	Infectivity Acts as <i>In Vivo</i> Selection for Maintenance of the Chlamydial Cryptic Plasmid. Infection and Immunity, 2011, 79, 98-107.	2.2	48

#	Article	IF	CITATIONS
55	MyD88 Deficiency Leads to Decreased NK Cell Gamma Interferon Production and T Cell Recruitment during <i>Chlamydia muridarum</i> Genital Tract Infection, but a Predominant Th1 Response and Enhanced Monocytic Inflammation Are Associated with Infection Resolution. Infection and Immunity, 2011, 79, 486-498.	2.2	45
56	Enhanced Neutrophil Longevity and Recruitment Contribute to the Severity of Oviduct Pathology during Chlamydia muridarum Infection. Infection and Immunity, 2011, 79, 4029-4041.	2.2	56
57	Stimulator of IFN Gene Is Critical for Induction of IFN-β during <i>Chlamydia muridarum</i> Infection. Journal of Immunology, 2010, 184, 2551-2560.	0.8	103
58	Pathogenesis of Genital Tract Disease Due to <i>Chlamydia trachomatis</i> . Journal of Infectious Diseases, 2010, 201, 114-125.	4.0	298
59	Critical Role for Interleukin-1β (IL-1β) during <i>Chlamydia muridarum</i> Genital Infection and Bacterial Replication-Independent Secretion of IL-1β in Mouse Macrophages. Infection and Immunity, 2009, 77, 5334-5346.	2.2	85
60	ORIGINAL ARTICLE: The Combination of the Gastrointestinal Integrin (α4β7) and Selectin Ligand Enhances Tâ€Cell Migration to the Reproductive Tract During Infection with <i>Chlamydia trachomatis</i> . American Journal of Reproductive Immunology, 2009, 61, 446-452.	1.2	23
61	Type I Interferon Signaling Exacerbates <i>Chlamydia muridarum</i> Genital Infection in a Murine Model. Infection and Immunity, 2008, 76, 4642-4648.	2.2	98
62	Effect of the Purinergic Receptor P2X7onChlamydiaInfection in Cervical Epithelial Cells and Vaginally Infected Mice. Journal of Immunology, 2007, 179, 3707-3714.	0.8	59
63	Plasmid-Deficient <i>Chlamydia muridarum</i> Fail to Induce Immune Pathology and Protect against Oviduct Disease. Journal of Immunology, 2007, 179, 4027-4034.	0.8	185
64	Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cellular Microbiology, 2006, 8, 1047-1057.	2.1	128
65	Recruitment of BAD by the Chlamydia trachomatis Vacuole Correlates with Host-Cell Survival. PLoS Pathogens, 2006, 2, e45.	4.7	106
66	Can Chlamydia Be Stopped?. Scientific American, 2005, 292, 72-79.	1.0	11
67	<i>Chlamydia trachomatis</i> Induces Expression of IFN-Î ³ -Inducible Protein 10 and IFN-Î ² Independent of TLR2 and TLR4, but Largely Dependent on MyD88. Journal of Immunology, 2005, 175, 450-460.	0.8	87
68	Relationship between Intracranial Granulomas and Cerebrospinal Fluid Levels of Gamma Interferon and Interleukin-10 in Patients with Tuberculous Meningitis. Vaccine Journal, 2005, 12, 363-365.	3.1	12
69	Chlamydia trachomatis Infections in Neonates and Young Children. Seminars in Pediatric Infectious Diseases, 2005, 16, 235-244.	1.7	156
70	Nonadherence With Pediatric Human Immunodeficiency Virus Therapy as Medical Neglect. Pediatrics, 2004, 114, e346-e353.	2.1	24
71	Protection against Chlamydia trachomatis infection in vitro and modulation of inflammatory response in vivo by membrane-bound glycosaminoglycans. Microbes and Infection, 2004, 6, 369-376.	1.9	4
72	Cell death, BAX activation, and HMGB1 release during infection with. Microbes and Infection, 2004, 6, 1145-1155.	1.9	31

#	Article	IF	CITATIONS
73	MANAGEMENT OF ACUTE HEMATOGENOUS OSTEOMYELITIS IN CHILDREN. Pediatric Infectious Disease Journal, 2004, 23, 255-257.	2.0	45
74	Inhibition of Chlamydial Infectious Activity due to P2X7R-Dependent Phospholipase D Activation. Immunity, 2003, 19, 403-412.	14.3	155
75	Role of Proapoptotic BAX in Propagation of Chlamydia muridarum (the Mouse Pneumonitis Strain of) Tj ETQq1 1 278, 9496-9502.	0.784314 3.4	rgBT /Over 43
76	Toll-Like Receptor-2, but Not Toll-Like Receptor-4, Is Essential for Development of Oviduct Pathology in Chlamydial Genital Tract Infection. Journal of Immunology, 2003, 171, 6187-6197.	0.8	272
77	Characterization of Chlamydial Genital Infection Resulting from Sexual Transmission from Male to Female Guinea Pigs and Determination of Infectious Dose. Infection and Immunity, 2003, 71, 6148-6154.	2.2	47
78	Infective endocarditis in Arkansan children from 1990 through 2002. Pediatric Infectious Disease Journal, 2003, 22, 1048-1052.	2.0	78
79	Inhibition of Apoptosis by Gamma Interferon in Cells and Mice Infected with Chlamydia muridarum (the) Tj ETQq1	1.0.7843 2.2	14 rgBT /O
80	Mouse Strain-Dependent Chemokine Regulation of the Genital Tract T Helper Cell Type 1 Immune Response. Infection and Immunity, 2001, 69, 7419-7424.	2.2	52
81	Early Local Cytokine Profiles in Strains of Mice with Different Outcomes from Chlamydial Genital Tract Infection. Infection and Immunity, 2001, 69, 3556-3561.	2.2	99
82	Does Inhibition of Tumor Necrosis Factor Alpha Affect Chlamydial Genital Tract Infection in Mice and Guinea Pigs?. Infection and Immunity, 2000, 68, 5299-5305.	2.2	36
83	Effect of Chlamydia trachomatis Infection and Subsequent Tumor Necrosis Factor Alpha Secretion on Apoptosis in the Murine Genital Tract. Infection and Immunity, 2000, 68, 2237-2244.	2.2	62
84	Imipenem and meropenem. Seminars in Pediatric Infectious Diseases, 1999, 10, 38-44.	1.7	5
85	Gonorrhea. Pediatrics in Review, 1999, 20, 125-128.	0.4	0
86	Genital Warts. Pediatrics in Review, 1999, 20, 271-272.	0.4	0
87	A Role for Interleukin-6 in Host Defense against Murine <i>Chlamydia trachomatis</i> Infection. Infection and Immunity, 1998, 66, 4564-4567.	2.2	60
88	Chlamydia. Pediatrics in Review, 1998, 19, 85-91.	0.4	0
89	Blastomycosis in Children. Clinical Infectious Diseases, 1996, 22, 496-502.	5.8	83
90	Single Dose Pharmacokinetics of Cefpodoxime Proxetil in Infants and Children. Drug Investigation, 1994, 7, 221-233.	0.6	9

#	Article	IF	CITATIONS
91	Impact of Immunization Against Haemophilus influenzae Type b (HIB) on the Incidence of HIB Meningitis Treated at Arkansas Children's Hospital. Southern Medical Journal, 1994, 87, 38-40.	0.7	7
92	The Cephalosporin Antibiotics. Pediatrics in Review, 1994, 15, 54-62.	0.4	0
93	The systemic inflammatory response syndrome (SIRS): Immunology and potential immunotherapy. Infection, 1993, 21, 279-290.	4.7	55
94	DETECTION OF HAEMOPHILUS INFLUENZAE TYPE B ANTIGEN IN CEREBROSPINAL FLUID AFTER IMMUNIZATION. Pediatric Infectious Disease Journal, 1992, 11, 243.	2.0	14
95	Chlamydia Immunopathogenesis. , 0, , 240-264.		0