Mingyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902431/publications.pdf

Version: 2024-02-01

32	1,628	17 h-index	29
papers	citations		g-index
34	34	34	844
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Creating functionally graded concrete materials with varying 3D printing parameters. Virtual and Physical Prototyping, 2022, 17, 662-681.	10.4	16
2	A comparative study on environmental performance of 3D printing and conventional casting of concrete products with industrial wastes. Chemosphere, 2022, 298, 134310.	8.2	26
3	Comprehensive investigations on printability and thermal performance of cementitious material incorporated with PCM under various conditions. Energy Conversion and Management, 2022, 261, 115667.	9.2	9
4	Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Automation in Construction, 2021, 123, 103546.	9.8	26
5	Effect of printing parameters on material distribution in spray-based 3D concrete printing (S-3DCP). Automation in Construction, 2021, 124, 103570.	9.8	27
6	Additive Manufacturing in the Construction Industry: The Comparative Competitiveness of 3D Concrete Printing. Applied Sciences (Switzerland), 2021, 11, 3865.	2.5	17
7	Extracting BIM Information for Lattice Toolpath Planning in Digital Concrete Printing with Developed Dynamo Script: A Case Study. Journal of Computing in Civil Engineering, 2021, 35, .	4.7	18
8	Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cement and Concrete Research, 2021, 143, 106386.	11.0	76
9	Variable-geometry nozzle for surface quality enhancement in 3D concrete printing. Additive Manufacturing, 2021, 37, 101638.	3.0	12
10	Study of MgO-activated slag as a cementless material for sustainable spray-based 3D printing. Journal of Cleaner Production, 2020, 258, 120671.	9.3	36
11	Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual and Physical Prototyping, 2020, 15, 178-193.	10.4	46
12	Rotation nozzle and numerical simulation of mass distribution at corners in 3D cementitious material printing. Additive Manufacturing, 2020, 34, 101190.	3.0	9
13	Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine. Composites Part B: Engineering, 2020, 193, 108018.	12.0	36
14	Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 2020, 261, 121245.	9.3	116
15	Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Construction and Building Materials, 2019, 221, 595-603.	7.2	85
16	Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent. Construction and Building Materials, 2019, 211, 1073-1084.	7.2	66
17	Effect of printing parameters in 3D concrete printing: Printing region and support structures. Journal of Materials Processing Technology, 2019, 271, 261-270.	6.3	120
18	A systematical review of 3D printable cementitious materials. Construction and Building Materials, 2019, 207, 477-490.	7.2	160

#	Article	IF	CITATIONS
19	Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures. Virtual and Physical Prototyping, 2019, 14, 284-292.	10.4	55
20	Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing. Construction and Building Materials, 2019, 198, 245-255.	7.2	102
21	Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Construction and Building Materials, 2018, 163, 600-610.	7.2	184
22	Towards Additive Manufacturing: Pumping Flow Rate with Time-Dependent Material Rheology in 3D Cementitious Material Printing. Materials Science Forum, 2018, 941, 2131-2136.	0.3	1
23	Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Construction and Building Materials, 2018, 189, 676-685.	7.2	80
24	Large-scale 3D printing by a team of mobile robots. Automation in Construction, 2018, 95, 98-106.	9.8	238
25	Approaching Rectangular Extrudate in 3D Printing for Building and Construction by Experimental Iteration of Nozzle Design. , 2017, , .		8
26	Modeling and analysis of paste freezing in freeze-form extrusion fabrication of thin-wall parts via a lumped method. Journal of Materials Processing Technology, 2016, 237, 163-180.	6.3	7
27	Modeling, Analysis, and Simulation of Paste Freezing in Freeze-Form Extrusion Fabrication of Thin-Wall Parts. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	2.2	8
28	Effect of Paste Properties on Extrudate Freezing Time in Freeze-Form Extrusion Fabrication Processes. , 2014, , .		0
29	Extrusion Process Modeling for Aqueous-Based Ceramic Pastes—Part 2: Experimental Verification. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	2,2	9
30	Extrusion Process Modeling for Aqueous-Based Ceramic Pastesâ€"Part 1: Constitutive Model. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	2,2	8
31	Chemical kinetics-based analysis for utilities of ZEC power generation system. International Journal of Hydrogen Energy, 2008, 33, 4673-4680.	7.1	17
32	Effect of spray-based printing parameters on cementitious material distribution. , 0, , .		6