Bingbing An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902386/publications.pdf Version: 2024-02-01

RINCRING AN

#	Article	IF	CITATIONS
1	On the Mechanics of Fatigue and Fracture in Teeth. Applied Mechanics Reviews, 2014, 66, 0308031-3080319.	10.1	83
2	Role of crystal arrangement on the mechanical performance of enamel. Acta Biomaterialia, 2012, 8, 3784-3793.	8.3	50
3	The role of property gradients on the mechanical behavior of human enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 63-72.	3.1	47
4	Fracture toughening mechanism of cortical bone: An experimental and numerical approach. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 983-992.	3.1	31
5	Role of microstructure on fracture of dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 527-537.	3.1	22
6	On the mechanical behavior of bio-inspired materials with non-self-similar hierarchy. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 8-17.	3.1	14
7	Damage mechanisms in uniaxial compression of single enamel rods. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 1-9.	3.1	14
8	Fracture analysis for biological materials with an expanded cohesive zone model. Journal of Biomechanics, 2014, 47, 2244-2248.	2.1	13
9	An analysis of crack growth in dentin at the microstructural scale. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 149-160.	3.1	12
10	Protection mechanisms of the carapace of a box turtle. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 54-67.	3.1	11
11	Determination of elastic and plastic mechanical properties of dentin based on experimental and numerical studies. Applied Mathematics and Mechanics (English Edition), 2015, 36, 1347-1358.	3.6	10
12	Constitutive modeling the plastic deformation of bone-like materials. International Journal of Solids and Structures, 2016, 92-93, 1-8.	2.7	10
13	An analysis of fracture in staggered mineralized collagen fibril arrays. International Journal of Solids and Structures, 2020, 193-194, 535-549.	2.7	9
14	Role of strain rate sensitivity of extrafibrillar matrix on fracture in mineralized collagen fibril arrays. Engineering Fracture Mechanics, 2021, 245, 107592.	4.3	9
15	Bioinspired toughening mechanism: lesson from dentin. Bioinspiration and Biomimetics, 2015, 10, 046010.	2.9	8
16	Effect of Interfacial Properties on the Mechanical Behavior of Bone-Like Materials: A Numerical Study. International Journal of Applied Mechanics, 2017, 09, 1750014.	2.2	8
17	Analysis of crack interacting with the composite microstructure of dentin. European Journal of Mechanics, A/Solids, 2017, 66, 287-295.	3.7	8
18	A theory of biological composites undergoing plastic deformations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 204-212.	3.1	8

BINGBING AN

#	Article	IF	CITATIONS
19	Dynamic crack propagation in the turtle carapace. Mechanics of Materials, 2020, 151, 103614.	3.2	8
20	Notch tip fields in amorphous films resting on ductile substrates. European Journal of Mechanics, A/Solids, 2019, 75, 1-9.	3.7	7
21	Crack initiation and propagation in composite microstructure of dentin. International Journal of Solids and Structures, 2017, 110-111, 36-43.	2.7	6
22	Localized plastic deformation in amorphous films on a ductile substrate. Mechanics of Materials, 2019, 136, 103084.	3.2	4
23	Delamination of Stiff Films on Pressure Sensitive Ductile Substrates. International Journal of Applied Mechanics, 2019, 11, 1950014.	2.2	3
24	Role of soft bi-layer coating on the protection of turtle carapace. Journal of Biomechanics, 2021, 126, 110618.	2.1	3
25	The effect of microcracking in the peritubular dentin on the fracture of dentin. Journal of Biomechanics, 2017, 65, 125-130.	2.1	2
26	Enamel-inspired materials design achieving balance of high stiffness and large energy dissipation. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103587.	3.1	1
27	Competing mechanisms in fracture of amorphous films resting on ductile substrates. Engineering Fracture Mechanics, 2020, 236, 107215.	4.3	1
28	Multiple cracking of amorphous films on ductile substrates. International Journal of Fracture, 0, , .	2.2	0
29	Interaction of rod decussation and crack growth in enamel. Computer Methods in Biomechanics and Biomedical Engineering, 0, , 1-10.	1.6	0