sandrine Etienne-Manneville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790237/publications.pdf

Version: 2024-02-01

84 papers 13,939 citations

57758 44 h-index 71685 **76** g-index

94 all docs 94 docs citations

94 times ranked 16493 citing authors

#	Article	IF	Citations
1	Microtubules tune mechanosensitive cell responses. Nature Materials, 2022, 21, 366-377.	27. 5	77
2	Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging. Science Advances, 2022, 8, eabm2696.	10.3	21
3	Impact of noise on the regulation of intracellular transport of intermediate filaments. Journal of Theoretical Biology, 2022, 547, 111183.	1.7	5
4	Intermediate filaments. Current Biology, 2021, 31, R522-R529.	3.9	19
5	Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics. Cells, 2021, 10, 1905.	4.1	29
6	Multiscale rheology of glioma cells. Biomaterials, 2021, 275, 120903.	11.4	11
7	Abstract P461: Phospho-regulated Spatial Regulation Of α-tat1 Mediates Dynamic Microtubule Acetylation. Circulation Research, 2021, 129, .	4.5	O
8	Multicellular scale front-to-rear polarity in collective migration. Current Opinion in Cell Biology, 2020, 62, 114-122.	5.4	37
9	Cytoskeletal Crosstalk in Cell Migration. Trends in Cell Biology, 2020, 30, 720-735.	7.9	225
10	P120catenin tuning of VE-cadherin endocytosis controls collective cell behavior during angiogenesis. Journal of Cell Biology, 2020, 219, .	5.2	2
11	Intermediate filaments against actomyosin: the david and goliath of cell migration. Current Opinion in Cell Biology, 2020, 66, 79-88.	5.4	25
12	Cell polarity inside-out. Current Opinion in Cell Biology, 2020, 62, iii-iv.	5.4	0
13	A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. Journal of Allergy and Clinical Immunology, 2020, 146, 1201-1204.e8.	2.9	33
14	Stochastic modeling reveals how motor protein and filament properties affect intermediate filament transport. Journal of Theoretical Biology, 2019, 464, 132-148.	1.7	17
15	Deciphering the transport of elastic filaments by antagonistic motor proteins. Physical Review E, 2019, 99, 042414.	2.1	8
16	Engagement of vimentin intermediate filaments in hypotonic stress. Journal of Cellular Biochemistry, 2019, 120, 13168-13176.	2.6	14
17	Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration. Journal of Cell Science, 2019, 132, .	2.0	45
18	Microtubule Function in the Mechanosensitive Regulation of Cell Migration. Biophysical Journal, 2019, 116, 18a.	0.5	0

#	Article	IF	Citations
19	Microtubules at focal adhesions – a double-edged sword. Journal of Cell Science, 2019, 132, .	2.0	74
20	Connexin 30 controls astroglial polarization during postnatal brain development. Development (Cambridge), 2018, 145, .	2.5	29
21	Integrin diversity brings specificity in mechanotransduction. Biology of the Cell, 2018, 110, 49-64.	2.0	91
22	Mitochondrial MDM2 Regulates Respiratory Complex I Activity Independently of p53. Molecular Cell, 2018, 69, 594-609.e8.	9.7	68
23	Imaging Intermediate Filaments and Microtubules with 2-dimensional Direct Stochastic Optical Reconstruction Microscopy. Journal of Visualized Experiments, 2018, , .	0.3	5
24	Having it all, a scientific career and a family. Nature Cell Biology, 2018, 20, 1001-1001.	10.3	0
25	Cytoplasmic Intermediate Filaments in Cell Biology. Annual Review of Cell and Developmental Biology, 2018, 34, 1-28.	9.4	147
26	Intermediate filaments control collective migration by restricting traction forces and sustaining cell–cell contacts. Journal of Cell Biology, 2018, 217, 3031-3044.	5.2	126
27	Regulation of microtubule-associated motors drives intermediate filament network polarization. Journal of Cell Biology, 2017, 216, 1689-1703.	5.2	85
28	Connecting the plasma membrane to the nucleus by intermediate filaments. Molecular Biology of the Cell, 2017, 28, 695-696.	2.1	10
29	Intermediate filaments join the action. Cell Cycle, 2017, 16, 1389-1390.	2.6	7
30	Single and collective cell migration: the mechanics of adhesions. Molecular Biology of the Cell, 2017, 28, 1833-1846.	2.1	287
31	The front and rear of collective cell migration. Nature Reviews Molecular Cell Biology, 2016, 17, 97-109.	37.0	649
32	Alan Hall (1952–2015), an Englishman in New York. EMBO Journal, 2015, 34, 1735-1736.	7.8	0
33	Adhesive Micropatterns to Study Intermediate Filament Function in Nuclear Positioning. Current Protocols in Cell Biology, 2015, 66, 13.7.1-13.7.19.	2.3	2
34	Intermediate filaments in cell migration and invasion: the unusual suspects. Current Opinion in Cell Biology, 2015, 32, 102-112.	5.4	118
35	Editorial overview: Cell architecture: Intermediate filaments — from molecules to patients. Current Opinion in Cell Biology, 2015, 32, v-vi.	5.4	0
36	Heparan Sulfate Saccharides Modify Focal Adhesions: Implication in Mucopolysaccharidosis Neuropathophysiology. Journal of Molecular Biology, 2015, 427, 775-791.	4.2	31

#	Article	IF	Citations
37	Front-to-Rear Polarity in Migrating Cells. , 2015, , 115-146.		10
38	Spectrin binding motifs regulate Scribble cortical dynamics and polarity function. ELife, 2015, 4, .	6.0	14
39	Centrosome positioning in polarized cells: Common themes and variations. Experimental Cell Research, 2014, 328, 240-248.	2.6	69
40	Adherens junction treadmilling during collective migration. Nature Cell Biology, 2014, 16, 639-651.	10.3	142
41	Neighborly relations during collective migration. Current Opinion in Cell Biology, 2014, 30, 51-59.	5.4	50
42	Microtubules in Cell Migration. Annual Review of Cell and Developmental Biology, 2013, 29, 471-499.	9.4	406
43	p120catenin alteration in cancer and its role in tumour invasion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130015.	4.0	19
44	APC binds intermediate filaments and is required for their reorganization during cell migration. Journal of Cell Biology, 2013, 200, 249-258.	5.2	84
45	N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. Journal of Cell Science, 2012, 125, 844-857.	2.0	125
46	N-cadherin expression level as a critical indicator of invasion in non-epithelial tumors. Cell Adhesion and Migration, 2012, 6, 327-332.	2.7	23
47	Adherens Junctions During Cell Migration. Sub-Cellular Biochemistry, 2012, 60, 225-249.	2.4	28
48	Nuclear positioning: Mechanisms and functions. International Journal of Biochemistry and Cell Biology, 2011, 43, 1698-1707.	2.8	82
49	Control of polarized cell morphology and motility by adherens junctions. Seminars in Cell and Developmental Biology, 2011, 22, 850-857.	5.0	30
50	Distinct functional outputs of PTEN signalling are controlled by dynamic association with \hat{l}^2 -arrestins. EMBO Journal, 2011, 30, 2557-2568.	7.8	58
51	Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. Journal of Cell Science, 2011, 124, 865-872.	2.0	96
52	Adhesion Molecules and Their Function in Astrocyte Polarity. Frontiers in Neuroscience, 2011, , 63-106.	0.0	0
53	From signaling pathways to microtubule dynamics: the key players. Current Opinion in Cell Biology, 2010, 22, 104-111.	5.4	143
54	Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse. EMBO Journal, 2010, 29, 2301-2314.	7.8	111

#	Article	IF	CITATIONS
55	Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. Journal of Cell Biology, 2010, 191, 585-598.	5.2	72
56	Cdc42 localization and cell polarity depend on membrane traffic. Journal of Cell Biology, 2010, 191, 1261-1269.	5.2	156
57	Classical cadherins control nucleus and centrosome position and cell polarity. Journal of Cell Biology, 2009, 185, 779-786.	5.2	167
58	Scribble at the crossroads. Journal of Biology, 2009, 8, 104.	2.7	5
59	APC in Cell Migration. Advances in Experimental Medicine and Biology, 2009, 656, 30-40.	1.6	46
60	Polarity proteins in migration and invasion. Oncogene, 2008, 27, 6970-6980.	5.9	250
61	Polarity proteins in glial cell functions. Current Opinion in Neurobiology, 2008, 18, 488-494.	4.2	32
62	Scrib regulates PAK activity during the cell migration process. Human Molecular Genetics, 2008, 17, 3552-3565.	2.9	95
63	In Vitro Assay of Primary Astrocyte Migration as a Tool to Study Rho GTPase Function in Cell Polarization. Methods in Enzymology, 2006, 406, 565-578.	1.0	103
64	Scrib Controls Cdc42 Localization and Activity to Promote Cell Polarization during Astrocyte Migration. Current Biology, 2006, 16, 2395-2405.	3.9	198
65	Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biology of the Cell, 2006, 98, 557-565.	2.0	50
66	Functional analysis of Peutz–Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Human Molecular Genetics, 2005, 14, 1283-1292.	2.9	131
67	Cdc42 and Par6–PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. Journal of Cell Biology, 2005, 170, 895-901.	5.2	277
68	Regulation of Cell Migration by the C2 Domain of the Tumor Suppressor PTEN. Science, 2004, 303, 1179-1181.	12.6	299
69	Actin and Microtubules in Cell Motility: Which One is in Control?. Traffic, 2004, 5, 470-477.	2.7	291
70	Cdc42 - the centre of polarity. Journal of Cell Science, 2004, 117, 1291-1300.	2.0	662
71	Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Current Opinion in Cell Biology, 2003, 15, 67-72.	5.4	273
72	Cdc42 regulates GSK- $3\hat{l}^2$ and adenomatous polyposis coli to control cell polarity. Nature, 2003, 421, 753-756.	27.8	803

#	Article	IF	CITATIONS
73	Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells. Journal of Cell Science, 2003, 116, 3927-3938.	2.0	95
74	Involvement of the Arp2/3 Complex and Scar2 in Golgi Polarity in Scratch Wound Models. Molecular Biology of the Cell, 2003, 14, 670-684.	2.1	53
75	Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Current Opinion in Cell Biology, 2003, 15, 67-72.	5 . 4	1
76	Lymphocyte trafficking through the blood–brain barrier is dependent on endothelial cell heterotrimeric Gâ€protein signaling. FASEB Journal, 2002, 16, 1185-1194.	0.5	34
77	Les molécules qui dirigent la migration des astrocytes. Medecine/Sciences, 2002, 18, 142-144.	0.2	2
78	Lymphocyte migration into the central nervous system. Vascular Pharmacology, 2002, 38, 315-322.	2.1	112
79	Rho GTPases in cell biology. Nature, 2002, 420, 629-635.	27.8	4,288
80	Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKCζ. Cell, 2001, 106, 489-498.	28.9	970
81	ICAM-1-Coupled Cytoskeletal Rearrangements and Transendothelial Lymphocyte Migration Involve Intracellular Calcium Signaling in Brain Endothelial Cell Lines. Journal of Immunology, 2000, 165, 3375-3383.	0.8	278
82	MHC class II engagement in brain endothelial cells induces protein kinase A-dependent IL-6 secretion and phosphorylation of cAMP response element-binding protein. Journal of Immunology, 1999, 163, 3636-41.	0.8	21
83	ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. Journal of Immunology, 1998, 161, 5755-61.	0.8	180
84	Salen-Manganese Complexes Are Superoxide Dismutase-Mimics. Biochemical and Biophysical Research Communications, 1993, 192, 964-968.	2.1	197