Negar Ashari Astani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7901989/publications.pdf

Version: 2024-02-01

840119 5,658 14 11 citations h-index papers

g-index 14 14 14 8614 docs citations times ranked citing authors all docs

1058022

14

#	Article	IF	CITATIONS
1	Molecular Machinery Responsible for Graphene Oxide's Distinct Inhibitory Effects toward <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i> Pathogens. ACS Applied Bio Materials, 2021, 4, 660-668.	2.3	6
2	Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays. Journal of Colloid and Interface Science, 2018, 521, 119-131.	5.0	45
3	Computational Characterization of the Dependence of Halide Perovskite Effective Masses on Chemical Composition and Structure. Journal of Physical Chemistry C, 2017, 121, 23886-23895.	1.5	38
4	Extended Intermolecular Interactions Governing Photocurrent–Voltage Relations in Ternary Organic Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3936-3944.	2.1	11
5	Valence and conduction band tuning in halide perovskites for solar cell applications. Journal of Materials Chemistry A, 2016, 4, 15997-16002.	5.2	132
6	Synthesis, characterization and ab initio investigation of a panchromatic ullazine–porphyrin photosensitizer for dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2332-2339.	5.2	47
7	Entropic stabilization of mixed A-cation ABX ₃ metal halide perovskites for high performance perovskite solar cells. Energy and Environmental Science, 2016, 9, 656-662.	15.6	1,077
8	In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO ₂ Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Surface of Dye-Sensitized Solar Cells. ACS Applied Materials & Surface of Dye-Sensitized Solar Cells.	4.0	30
9	Lessons from Nature: Computational Design of Biomimetic Compounds and Processes. Chimia, 2014, 68, 642.	0.3	4
10	Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6, 242-247.	6.6	3,982
11	Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2733-2739.	3.2	154
12	Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2642-2648.	3.2	49
13	Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 8731-8735.	7.2	61
14	Pushing the Frontiers of First-Principles Based Computer Simulations of Chemical and Biological Systems. Chimia, 2011, 65, 667.	0.3	22