Xiao-Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7901914/publications.pdf

Version: 2024-02-01

243 papers 11,510 citations

25034 57 h-index 96 g-index

246 all docs

246 docs citations

246 times ranked 7517 citing authors

#	Article	IF	CITATIONS
1	Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics Letters, 1997, 22, 1119.	3.3	564
2	Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light: Science and Applications, 2020, 9, 86.	16.6	432
3	New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light: Science and Applications, 2013, 2, e50-e50.	16.6	355
4	A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light: Science and Applications, 2016, 5, e16024-e16024.	16.6	289
5	Mn2+ activated green, yellow, and red long persistent phosphors. Journal of Luminescence, 2003, 102-103, 34-37.	3.1	245
6	Enhanced Red Emission in CaMoO ₄ :Bi ³⁺ ,Eu ³⁺ . Journal of Physical Chemistry C, 2007, 111, 13256-13260.	3.1	243
7	Characterization of fluid flow velocity by optical Doppler tomography. Optics Letters, 1995, 20, 1337.	3.3	236
8	Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer. Chemical Communications, 2011, 47, 10677.	4.1	225
9	Green phosphorescence of CaAl2O4:Tb3+,Ce3+ through persistence energy transfer. Applied Physics Letters, 2002, 80, 1535-1537.	3.3	212
10	Tunable Full-Color Emitting BaMg ₂ Al ₆ Si ₉ O ₃₀ :Eu ²⁺ , Tb ³⁺ , Mn ²⁺ Phosphors Based on Energy Transfer. Inorganic Chemistry, 2011, 50, 7846-7851.	4.0	197
11	Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.	14.9	189
12	Ca1â^'xLixAl1â^'xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light: Science and Applications, 2016, 5, e16155-e16155.	16.6	186
13	New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light: Science and Applications, 2016, 5, e16124-e16124.	16.6	185
14	Aminolysis of Polymers with Thiocarbonylthio Termini Prepared by RAFT Polymerization:  The Difference between Polystyrene and Polymethacrylates. Macromolecules, 2006, 39, 8616-8624.	4.8	166
15	White light emitting diode by using α-Ca2P2O7:Eu2+, Mn2+ phosphor. Applied Physics Letters, 2007, 90, 261113.	3.3	159
16	Stacking-Dependent Optical Conductivity of Bilayer Graphene. ACS Nano, 2010, 4, 4074-4080.	14.6	145
17	Characterization of dentin and enamel by use of optical coherence tomography. Applied Optics, 1999, 38, 2092.	2.1	140
18	Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe ³⁺ doping in NaYF ₄ :Yb,Er nanocrystals. Nanoscale, 2015, 7, 14752-14759.	5 . 6	135

#	Article	IF	CITATIONS
19	Fabrication of Eu3+and Sm3+Codoped Micro/Nanosized MMoO4(M = Ca, Ba, and Sr) via Facile Hydrothermal Method and Their Photoluminescence Properties through Energy Transfer. Journal of Physical Chemistry C, 2008, 112, 5860-5864.	3.1	123
20	Effect of OH-on the Luminescent Efficiency and Lifetime of Tb3+-Doped Yttrium Orthophosphate Synthesized by Solution Precipitation. Journal of Physical Chemistry B, 2005, 109, 13154-13158.	2.6	121
21	Near-Infrared to Visible Upconversion in Er ³⁺ and Yb ³⁺ Codoped Lu ₂ O ₃ Nanocrystals: Enhanced Red Color Upconversion and Three-Photon Process in Green Color Upconversion. Journal of Physical Chemistry C, 2009, 113, 4413-4418.	3.1	119
22	Effect of Oxygen Vacancy on Phase Transition and Photoluminescence Properties of Nanocrystalline Zirconia Synthesized by the One-Pot Reaction. Journal of Physical Chemistry C, 2009, 113, 13974-13978.	3.1	118
23	The Non-Concentration-Quenching Phosphor Ca ₃ Eu ₂ B ₄ O ₁₂ for WLED Application. Inorganic Chemistry, 2020, 59, 3894-3904.	4.0	118
24	A highly efficient and suitable spectral profile Cr3+-doped garnet near-infrared emitting phosphor for regulating photomorphogenesis of plants. Chemical Engineering Journal, 2022, 428, 132003.	12.7	118
25	Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria. Solid State Communications, 2004, 132, 409-413.	1.9	112
26	Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LEDs. Optical Materials, 2007, 30, 375-379.	3.6	111
27	Near infrared long-persistent phosphorescence in La_3Ga_5GeO_14:Cr^3+ phosphor. Optics Express, 2010, 18, 20215.	3.4	110
28	Blue LED-pumped intense short-wave infrared luminescence based on Cr3+-Yb3+-co-doped phosphors. Light: Science and Applications, 2022, 11, 136.	16.6	110
29	Generating yellow and red emissions by co-doping Mn2+ to substitute for Ca2+ and Sc3+ sites in Ca3Sc2Si3O12:Ce3+ green emitting phosphor for white LED applications. Journal of Materials Chemistry, 2011, 21, 16379.	6.7	100
30	Generation of broadband emission by incorporating N3â^' into Ca3Sc2Si3O12 : Ce3+ garnet for high rendering white LEDs. Journal of Materials Chemistry, 2011, 21, 6354.	6.7	94
31	Broadband Short-Wave Infrared Light-Emitting Diodes Based on Cr ³⁺ -Doped LiScGeO ₄ Phosphor. ACS Applied Materials & Interfaces, 2021, 13, 36011-36019.	8.0	93
32	Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white-light-emitting-diodes (WLEDs) application. Journal of Alloys and Compounds, 2007, 433, 352-355.	5 . 5	92
33	Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals. Journal of Materials Chemistry, 2011, 21, 2895.	6.7	90
34	Optical Doppler Tomography: Imaging <i>in vivo</i> Blood Flow Dynamics Following Pharmacological Intervention and Photodynamic Therapy. Photochemistry and Photobiology, 1998, 67, 56-60.	2.5	88
35	Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresource Technology, 2016, 218, 580-588.	9.6	85
36	Deep-Tissue Temperature Sensing Realized in BaY ₂ O ₄ :Yb ³⁺ /Er ³⁺ with Ultrahigh Sensitivity and Extremely Intense Red Upconversion Luminescence. Inorganic Chemistry, 2020, 59, 11054-11060.	4.0	85

#	Article	IF	CITATIONS
37	Luminescence and energy transfer in Ca3Sc2Si3O12:Ce3+,Mn2+ white LED phosphors. Journal of Luminescence, 2013, 133, 21-24.	3.1	84
38	Color tuning of $(K1\hat{a}^2x,Nax)$ SrPO4:0.005Eu2+, yTb3+ blue-emitting phosphors via crystal field modulation and energy transfer. Journal of Materials Chemistry C, 2013, 1, 4570.	5.5	84
39	Enriching red emission of Y_3Al_5O_12: Ce^3+ by codoping Pr^3+ and Cr^3+ for improving color rendering of white LEDs. Optics Express, 2010, 18, 25177.	3.4	81
40	Luminescent Properties in Relation to Controllable Phase and Morphology of LuBO3:Eu3+ Nano/Microcrystals Synthesized by Hydrothermal Approach. Chemistry of Materials, 2009, 21, 468-475.	6.7	80
41	Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresource Technology, 2017, 241, 473-481.	9.6	80
42	Site dependent thermoluminescence of long persistent phosphorescence of BaAl2O4:Ce3+. Optics Communications, 2002, 204, 247-251.	2.1	79
43	Tuning of Emission by Eu ³⁺ Concentration in a Pyrophosphate: the Effect of Local Symmetry. Inorganic Chemistry, 2020, 59, 2241-2247.	4.0	78
44	Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor. Journal of Luminescence, 2006, 118, 173-178.	3.1	76
45	High sensitivity glucose detection at extremely low concentrations using a MoS ₂ -based field-effect transistor. RSC Advances, 2018, 8, 7942-7948.	3.6	75
46	Blue-Green-Emitting Phosphor CaSc[sub 2]O[sub 4]:Tb[sup 3+]: Tunable Luminescence Manipulated by Cross-Relaxation. Journal of the Electrochemical Society, 2009, 156, H193.	2.9	74
47	Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry. Journal of Biomedical Optics, 1996, 1, 212.	2.6	73
48	Persistent energy transfer in CaAl2O4:Tb3+, Ce3+. Journal of Applied Physics, 2003, 93, 148-152.	2.5	72
49	Cr[sup 3+]-Doped Lanthanum Gallogermanate Phosphors with Long Persistent IR Emission. Electrochemical and Solid-State Letters, 2010, 13, J32.	2.2	67
50	Long lasting yellow phosphorescence and photostimulated luminescence in Sr ₃ SiO ₅ : Eu ²⁺ and Sr ₃ SiO ₅ : Eu ²⁺ , Dy ³⁺ phosphors. Journal Physics D: Applied Physics, 2008, 41, 195414.	2.8	66
51	Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor. Journal of Applied Physics, 2010, 108, .	2.5	66
52	Upconversion nanoparticles modified by $Cu < sub > 2 < lsub > S$ for photothermal therapy along with real-time optical thermometry. Nanoscale, 2021, 13, 7161-7168.	5.6	66
53	Electron traps in Tb3+-doped CaAl2O4. Chemical Physics Letters, 2002, 363, 241-244.	2.6	63
54	Enhancement of red fluorescence and afterglow in CaTiO3: Pr3+ by addition of Lu2O3. Journal of Luminescence, 2007, 122-123, 958-960.	3.1	63

#	Article	IF	CITATIONS
55	CaSc2O4:Eu3+: A tunable full-color emitting phosphor for white light emitting diodes. Optical Materials, 2011, 33, 355-358.	3.6	62
56	Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors. Applied Physics Letters, 2007, 90, 151911.	3.3	60
57	Red Phosphor Rb ₂ NbOF ₅ :Mn ⁴⁺ for Warm White Light-Emitting Diodes with a High Color-Rendering Index. Inorganic Chemistry, 2019, 58, 456-461.	4.0	60
58	A white light phosphor suitable for near ultraviolet excitation. Journal of Luminescence, 2007, 122-123, 955-957.	3.1	59
59	Single-phased white-emitting 12CaO·7Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays. Journal of Materials Chemistry, 2012, 22, 16839.	6.7	58
60	A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr ³⁺ doped zinc gallogermanate nanoparticles for bio-imaging. Dalton Transactions, 2016, 45, 1364-1372.	3.3	57
61	Optical thermometry based on the thermally coupled energy levels of Er ³⁺ in upconversion materials. Dalton Transactions, 2020, 49, 17115-17120.	3.3	57
62	A green-yellow emitting \hat{l}^2 -Sr2SiO4:Eu2+ phosphor for near ultraviolet chip white-light-emitting diode. Journal of Rare Earths, 2008, 26, 421-424.	4.8	56
63	Enhancement of the red emission in CaTiO3:Pr3+ by addition of rare earth oxides. Chemical Physics Letters, 2007, 434, 237-240.	2.6	55
64	Studies of the spectroscopic properties of Pr3+ doped LaF3 nanocrystals/glass. Journal of Luminescence, 2001, 94-95, 229-233.	3.1	50
65	Synthesis and luminescence properties of clew-like CaMoO4:Sm3+, Eu3+. Journal of Alloys and Compounds, 2011, 509, L348-L351.	5.5	48
66	The dependence of persistent phosphorescence on annealing temperatures in CaTiO3:Pr3+ nanoparticles prepared by a coprecipitation technique. Journal of Solid State Chemistry, 2008, 181, 393-398.	2.9	47
67	Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer. Journal of Applied Physics, 2007, 101, 063545.	2.5	46
68	Nitrogen removal via nitritation pathway for low-strength ammonium wastewater by adsorption, biological desorption and denitrification. Bioresource Technology, 2018, 267, 541-549.	9.6	46
69	A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes. Journal of Materials Chemistry C, 2018, 6, 8003-8010.	5.5	46
70	Positive-temperature-coefficient/negative-temperature-coefficient effect of low-density polyethylene filled with a mixture of carbon black and carbon fiber. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3094-3101.	2.1	45
71	Near-Infrared-to-Near-Infrared Optical Thermometer BaY ₂ O ₄ : Yb ³⁺ /Nd ³⁺ Assembled with Photothermal Conversion Performance. Inorganic Chemistry, 2022, 61, 5425-5432.	4.0	45
72	UV excitation properties of Eu3+ at the S6 site in bulk and nanocrystalline cubic Y2O3. Chemical Physics Letters, 2004, 384, 193-196.	2.6	44

#	Article	IF	CITATIONS
73	Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. Journal of Rare Earths, 2019, 37, 903-915.	4.8	44
74	The spectral properties of the 1SO state in SrAl12O19:Pr. Chemical Physics Letters, 2001, 348, 11-16.	2.6	41
75	Red phosphorescence in Sr4Al14O25: Cr3+,Eu2+,Dy3+ through persistent energy transfer. Applied Physics Letters, 2006, 88, 201916.	3.3	41
76	Mn2+ concentration manipulated red emission in BaMg2Si2O7:Eu2+,Mn2+. Journal of Applied Physics, 2007, 101, 033513.	2.5	41
77	Size Manipulated Photoluminescence and Phosphorescence in CaTiO ₃ :Pr ³⁺ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 18044-18048.	3.1	40
78	Synthesis of ABCDâ€type miktoarm star copolymers and transformation into zwitterionic star copolymers. Journal of Polymer Science Part A, 2007, 45, 4818-4828.	2.3	40
79	Persistent Emission of Narrowband Ultraviolet-B Light upon Blue-Light Illumination. Physical Review Applied, 2020, 13, .	3.8	40
80	Microwave-assisted synthesis of ZnO–Y3Al5O12:Ce3+ composites with enhanced visible light photocatalysis. Journal of Materials Chemistry, 2012, 22, 16293.	6.7	39
81	Characterization of human scalp hairs by optical low-coherence reflectometry. Optics Letters, 1995, 20, 524.	3.3	38
82	Color tunable phosphorescence in KY3F10:Tb3+ for x-ray or cathode-ray tubes. Journal of Applied Physics, 2009, 106, .	2.5	38
83	Composition-driven anionic disorder-order transformations triggered single-Eu2+-converted high-color-rendering white-light phosphors. Chemical Engineering Journal, 2020, 380, 122508.	12.7	38
84	Effect of Zn2+ and Mn2+ introduction on the luminescent properties of colloidal ZnS:Mn2+ nanoparticles. Applied Physics Letters, 2004, 84, 112-114.	3.3	36
85	Optical properties of trivalent europium doped ZnO:Zn phosphor under indirect excitation of near-UV light. Optics Express, 2008, 16, 11795.	3.4	36
86	Singleâ€Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs. Advanced Optical Materials, 2020, 8, 1901512.	7.3	36
87	Efficient and stable Sr ₃ Eu ₂ B ₄ O ₁₂ red phosphor benefiting from low symmetry and distorted local environment. Dalton Transactions, 2020, 49, 3260-3271.	3.3	36
88	Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography. Applied Optics, 1997, 36, 144.	2.1	35
89	Investigation on charging processes and phosphorescent efficiency of SrAl2O4:Eu,Dy. Journal of Luminescence, 2006, 119-120, 309-313.	3.1	35
90	Effect of retrapping on photostimulated luminescence in Sr3SiO5:Eu2+, Dy3+ phosphor. Journal of Applied Physics, 2009, 105, .	2.5	35

#	Article	IF	CITATIONS
91	Terpolymer-based SIPN coating with excellent antifogging and frost-resisting properties. RSC Advances, 2015, 5, 102560-102566.	3.6	35
92	Highly efficient and dual broad emitting light convertor: an option for next-generation plant growth LEDs. Journal of Materials Chemistry C, 2019, 7, 3617-3622.	5.5	35
93	Energy transfer and red phosphorescence in strontium aluminates co-doped with Cr3+, Eu2+ and Dy3+. Journal of Luminescence, 2006, 119-120, 327-331.	3.1	34
94	Evidence for visible quantum cutting via energy transfer in SrAl_12O_19:Pr,Cr. Optics Letters, 2007, 32, 991.	3.3	34
95	Enhanced Red Phosphorescence in MgGeO[sub 3]:Mn[sup 2+] by Addition of Yb[sup 3+] lons. Journal of the Electrochemical Society, 2009, 156, H272.	2.9	34
96	Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence. Talanta, 2017, 169, 181-188.	5.5	34
97	Dynamical processes of energy transfer in red emitting phosphor CaMoO4:Sm3+, Eu3+. Optical Materials, 2011, 33, 1591-1594.	3.6	33
98	Energy transfer in Y3Al5O12:Ce3+, Pr3+ and CaMoO4:Sm3+, Eu3+ phosphors. Journal of Luminescence, 2011, 131, 429-432.	3.1	33
99	Optical limiting and nonlinear absorption of excited states in metalloporphyrin-doped sol gels. IEEE Journal of Quantum Electronics, 1999, 35, 1004-1014.	1.9	32
100	Photoluminescence of Ce3+,Tb3+:Y2O3 nanoclusters embedded in SiO2 sol–gel glasses. Materials Science and Engineering C, 2001, 16, 55-58.	7.3	32
101	Up-converted emission in Pr3+-doped fluoride nanocrystals-based oxyfluoride glass ceramics. Journal of Luminescence, 2004, 108, 395-399.	3.1	32
102	Phase dependent photoluminescence and energy transfer in Ca2P2O7: Eu2+, Mn2+ phosphors for white LEDs. Journal of Luminescence, 2008, 128, 941-944.	3.1	32
103	The Enhanced Low-Voltage Cathodoluminescent Properties of Spherical Y2O3:Eu3+ Phosphors Coated with In2O3 and its Application to Field-Emission Displays. International Journal of Applied Ceramic Technology, 2011, 8, 752-758.	2.1	31
104	Response of nitritation performance and microbial community structure in sequencing biofilm batch reactors filled with different zeolite and alkalinity ratio. Bioresource Technology, 2019, 273, 487-495.	9.6	31
105	Photon cascade emission and quantum efficiency of the 3PO level in Pr3+-doped SrAl12O19 system. Journal of Luminescence, 2003, 102-103, 344-348.	3.1	30
106	Spectroscopic properties of tungsten–tellurite glasses doped with Er3+ ions at different concentrations. Optical Materials, 2006, 28, 255-258.	3.6	30
107	Photon cascade luminescence in CaAl12O19:Pr, Cr. Journal of Solid State Chemistry, 2007, 180, 2933-2941.	2.9	30
108	Ultraviolet-B persistent luminescence and thermoluminescence of bismuth ion doped garnet phosphors. Optical Materials Express, 2020, 10, 1296.	3.0	30

#	Article	IF	Citations
109	Spectral Probing of Surface Luminescence of Cubic Lu2O3:Eu3+ Nanocrystals Synthesized by Hydrothermal Approach. Journal of Physical Chemistry C, 2009, 113, 17705-17710.	3.1	28
110	Investigation into optical heating and applicability of the thermal sensor bifunctional properties of Yb ³⁺ sensitized Tm ³⁺ doped Y ₂ O ₃ , YAG and LaAlO ₃ phosphors. RSC Advances, 2016, 6, 97676-97683.	3.6	28
111	Salt inhibition on partial nitritation performance of ammonium-rich saline wastewater in the zeolite biological aerated filter. Bioresource Technology, 2019, 280, 287-294.	9.6	28
112	Nitrite accumulation stability evaluation for low-strength ammonium wastewater by adsorption and biological desorption of zeolite under different operational temperature. Science of the Total Environment, 2020, 704, 135260.	8.0	28
113	Design of a bi-functional NaScF4: Yb3+/Er3+ nanoparticles for deep-tissue bioimaging and optical thermometry through Mn2+ doping. Talanta, 2021, 224, 121832.	5.5	28
114	The mixing of the 4f2 1S0 state with the 4f5d states in Pr3+ doped SrAl12O19. Journal of Luminescence, 2001, 94-95, 119-122.	3.1	27
115	On the energy transfer from nanocrystalline ZnS to Tb3+ ions confined in reverse micelles. Chemical Physics Letters, 2005, 409, 144-148.	2.6	27
116	Spectrally tunable and thermally stable near-infrared luminescence in Na ₃ Sc ₂ (PO ₄) ₃ Cr ³⁺ phosphors by Ga ³⁺ co-doping for light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 994-1002.	5.5	27
117	Concentration effects on the luminiscence behavior of europium (III) chloride- and organoeuropium-doped silicate gels. Journal of Non-Crystalline Solids, 1994, 178, 44-51.	3.1	26
118	Oscillations with three damping effects. European Journal of Physics, 2002, 23, 155-164.	0.6	26
119	Study of nonlinear absorption in metalloporphyrin-doped sol-gel materials. Journal of Luminescence, 1994, 60-61, 469-473.	3.1	25
120	Optical limiting and upconverted luminescence in metalloporphyrin-doped sol-gels. Solid State Communications, 1998, 107, 101-106.	1.9	25
121	Delocalization, thermal ionization, and energy transfer in singly doped and codopedCaAl4O7andY2O3. Physical Review B, 2004, 69, .	3.2	25
122	The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics Condensed Matter, 2007, 19, 425229.	1.8	25
123	Luminescence and Energy Transfer in Eu[sup 2+] and Mn[sup 2+] Co-doped Ca[sub 2]P[sub 2]O[sub 7] for White Light-Emitting Diodes. Journal of the Electrochemical Society, 2008, 155, H606.	2.9	25
124	Photoluminescence and energy storage traps in CaTiO3:Pr3+. Materials Research Bulletin, 2010, 45, 1832-1836.	5.2	25
125	Nitrogen removal from iron oxide red wastewater via partial nitritation-Anammox based on two-stage zeolite biological aerated filter. Bioresource Technology, 2019, 279, 17-24.	9.6	25
126	The effect of the size of raw Gd(OH)3 precipitation on the crystal structure and PL properties of Gd2O3:Eu. Journal of Colloid and Interface Science, 2006, 297, 130-133.	9.4	24

#	Article	IF	CITATIONS
127	Synthesis of graft copolymers with "Vâ€shaped―and "Yâ€shaped―side chains via controlled radical and anionic polymerizations. Journal of Polymer Science Part A, 2007, 45, 4013-4025.	2.3	24
128	Synthesis and Optical Property Studies of Nanocrystalline ZrO[sub 2]:Ti Long-Lasting Phosphors. Journal of the Electrochemical Society, 2008, 155, K195.	2.9	24
129	A new dual-emission phosphor Ca4Si2O7F2:Ce3+, Mn2+ with energy transfer for near-UV LEDs. Materials Letters, 2012, 77, 45-47.	2.6	24
130	Enhanced luminescence performance of CaO:Ce ³⁺ ,Li ⁺ ,F ^{â^'} phosphor and its phosphor-in-glass based high-power warm LED properties. Journal of Materials Chemistry C, 2018, 6, 4077-4086.	5.5	24
131	Improving moisture stability of SrLiAl3N4:Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device. Journal of Colloid and Interface Science, 2019, 545, 195-199.	9.4	24
132	Crystal structure and luminescence properties of (Ca _{2.94â^'x} Lu _x Ce _{0.06})(Sc _{2â^'y} Mg _y)Si ₃ phosphors for white LEDs with excellent colour rendering and high luminous efficiency. Journal Physics D: Applied Physics, 2011, 44, 075402.	sub>O <su< td=""><td>b₂₃12</td></su<>	b ₂₃ 12
133	Luminescence investigation and thermal stability study of Eu2+ and Eu2+–Mn2+ codoped (Ba,Sr)Mg2Al6Si9O30 phosphor. Journal of Alloys and Compounds, 2012, 513, 430-435.	5.5	23
134	Partial nitritation performance and microbial community in sequencing batch biofilm reactor filled with zeolite under organics oppression and its recovery strategy. Bioresource Technology, 2020, 305, 123031.	9.6	23
135	High-activity daisy-like zeolitic imidazolate framework-67/reduced grapheme oxide-based colorimetric biosensor for sensitive detection of hydrogen peroxide. Journal of Colloid and Interface Science, 2022, 608, 3069-3078.	9.4	23
136	Crystal size dependence of the persistent phosphorescence in Sr2ZnSi2O7: Eu2+, Dy3+. Microelectronics Journal, 2005, 36, 546-548.	2.0	22
137	Enhanced phosphorescence in N contained Ba2SiO4:Eu2+ for X-ray and cathode ray tubes. Optical Materials, 2010, 32, 1042-1045.	3.6	22
138	Pilot study of nitrogen removal from landfill leachate by stable nitritation-denitrification based on zeolite biological aerated filter. Waste Management, 2019, 100, 161-170.	7.4	22
139	Blue emission of Sr2â^'xCaxP2O7:Eu2+ for near UV excitation. Journal of Alloys and Compounds, 2012, 515, 39-43.	5.5	21
140	Yellow-emitting (Ca2Lu1â^xCex)(ScMg)Si3O12 phosphor and its application for white LEDs. Materials Research Bulletin, 2012, 47, 1149-1152.	5.2	21
141	A multiphase strategy for realizing green cathodoluminescence in 12CaO·7Al2O3–CaCeAl3O7:Ce3+,Tb3+ conductive phosphor. Dalton Transactions, 2013, 42, 16311.	3.3	21
142	A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 317-322.	3.9	21
143	Energy transfer in Pr3+- and Er3+-codoped CaAl12O19 crystal. Optics Communications, 2001, 195, 405-410.	2.1	20
144	Enhancement of luminescence intensity and increase of emission lifetime in Eu3+-doped 3CdO–Al2O3–3SiO2 amorphous system. Journal of Luminescence, 2008, 128, 105-109.	3.1	20

#	Article	IF	CITATIONS
145	Structure and luminescent properties of new Dy3+/Eu3+/Sm3+-activated InNbTiO6 phosphors for white UV-LEDs. Optical Materials, 2019, 98, 109403.	3.6	20
146	Lightâ€induced electrons suppressed by Eu ³⁺ ions doped in Ca _{11.94â^'<i>x</i>} Sr _{<i>x</i>} Al ₁₄ O ₃₃ caged phosphors for LED and FEDs. Journal of the American Ceramic Society, 2017, 100, 3467-3477.	3.8	19
147	Charging Gd3Ga5O12:Pr3+ persistent phosphor using blue lasers. Journal of Luminescence, 2020, 226, 117427.	3.1	19
148	Measurement of quantum efficiency in Pr3+-doped CaAl4O7 and SrAl4O7 crystals. Applied Physics Letters, 2001, 79, 2160-2162.	3.3	18
149	Thermal stability and spectral properties of Er3+-doped gadolinium borosilicate glasses. Optical Materials, 2006, 28, 306-309.	3.6	18
150	Photoluminescent properties of yellow emitting Ca1â^'xEuxSi2O2â^'ÎN2+2Î'/3phosphors for white light-emitting diodes. Journal Physics D: Applied Physics, 2008, 41, 205103.	2.8	18
151	Intense violet-blue emitting (CaCl2/SiO2) : Eu2+phosphor powders for applications in UV-LED based phototherapy illuminators. Journal Physics D: Applied Physics, 2008, 41, 182001.	2.8	18
152	Manipulating trap filling of persistent phosphors upon illumination by using a blue light-emitting diode. Journal of Materials Chemistry C, 2020, 8, 6988-6992.	5.5	18
153	Trapping processes of 5d electrons in Ce3+ doped SrAl2O4. Journal of Luminescence, 2007, 122-123, 311-314.	3.1	17
154	Crystal structure and luminescence properties of Lu3+ and Mg2+ incorporated silicate garnet [Ca3â°'(x+0.06)LuxCe0.06](Sc2â°'yMgy)Si3O12. Journal of Luminescence, 2012, 132, 1257-1260.	3.1	17
155	Improvement of X-ray storage properties of C12A7:Tb3+ photo-stimulable phosphors through controlling encaged anions. Journal of Alloys and Compounds, 2017, 696, 828-835.	5.5	17
156	Site Occupancy and VUV–UV–Vis Photoluminescence of the Lanthanide lons in BaY ₂ Si ₃ O ₁₀ . Journal of Physical Chemistry C, 2018, 122, 7421-7431.	3.1	17
157	Spectroscopy of different sites in Pr3+-doped oxyfluoride glass ceramics. Microelectronics Journal, 2003, 34, 549-551.	2.0	16
158	Large-Scale Fabrication of Pr ³⁺ Doped or Undoped Nanosized ATiO ₃ (A = Ca,) Tj ETQqC 779-781.	0 0 0 rgBT 3.0	/Overlock 10 16
159	Pr3+ 1S0â†'Cr3+ energy transfer and ESR investigation in Pr3+ and Cr3+ activated SrAl12O19 quantum cutting phosphor. Journal of Luminescence, 2009, 129, 844-849.	3.1	16
160	Ca3Al2(SiO4)3â~δCl4δ:Eu2+, Mn2+: A potential phosphor with energy transfer for near-UV pumped white-LEDs. Optical Materials, 2011, 33, 1262-1265.	3.6	16
161	One-pot synthesis of high quality CdS nanocrystals by microwave irradiation in an organic phase: a green route for mass production. Journal of Materials Chemistry C, 2013, 1, 4550.	5.5	16
162	Effect of hydraulic retention time on effluent pH in anammox bioreactors: Characteristics of effluent pH and pH as an indicator of reactor performance. Journal of Environmental Management, 2021, 280, 111716.	7.8	16

#	Article	IF	CITATIONS
163	Investigation on the improvement of red phosphorescence in CaTiO3:Pr3+ nanoparticles. Journal of Luminescence, 2008, 128, 818-820.	3.1	15
164	Photoluminescence properties of CaO:Ce3+,Na+, a non-garnet yellow-emitting phosphor under blue light excitation. Materials Letters, 2012, 68, 443-445.	2.6	15
165	Luminescence behavior of inorganic and metalorganic europium(III) dopants incorporated into silica and epoxy-diol ORMOSIL sol-gel hosts. Journal of Sol-Gel Science and Technology, 1994, 2, 627-634.	2.4	14
166	Quenching of thermo-stimulated photo-ionization by energy transfer in CaAl4O7: Tb3+, Ce3+. Solid State Communications, 2004, 129, 1-4.	1.9	14
167	Experimental demonstration of the relationship between the OHâ^' content and photoluminescence in Tb-doped YPO4â^™2H2O. Applied Physics Letters, 2006, 88, 011907.	3.3	14
168	Long-Lasting Phosphorescence in BaSi[sub 2]O[sub 2]N[sub 2]:Eu[sup 2+] and Ba[sub 2]SiO[sub 4]:Eu[sup 2+] Phases for X-Ray and Cathode Ray Tubes. Journal of the Electrochemical Society, 2010, 157, H178.	2.9	14
169	Raman spectra of proton order of thin ice I <i>h</i> film. Journal of Raman Spectroscopy, 2015, 46, 388-391.	2.5	14
170	Performance and mechanism of urea hydrolysis in partial nitritation system based on SBR. Chemosphere, 2020, 258, 127228.	8.2	14
171	Dynamical processes of Ln3+ ions doped in LaF3 nanocrystals embedded in transparent oxyfluoride glass. Journal of Luminescence, 2006, 119-120, 153-160.	3.1	13
172	Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2. Physica B: Condensed Matter, 2011, 406, 3891-3895.	2.7	13
173	Eu[sup 2+]-Activated Ca[sub 8]Zn(SiO[sub 4])[sub 4]Cl[sub 2]: An Intense Green Emitting Phosphor for Blue Light Emitting Diodes. Journal of the Electrochemical Society, 2011, 158, H124.	2.9	13
174	An improved stochastic fractal search algorithm for 3D protein structure prediction. Journal of Molecular Modeling, 2018, 24, 125.	1.8	13
175	Effect of detrapping on up-conversion charging in LaMgGa11O19:Pr3+ persistent phosphor. Journal of Rare Earths, 2021, 39, 1492-1496.	4.8	13
176	Decay processes of nonequilibrium phonons in Pr3+-doped yttrium aluminum garnet. Physical Review B, 1991, 44, 900-902.	3.2	12
177	Intense green/yellow emission in Ca8Zn(SiO4)4Cl2:Eu2+, Mn2+ through energy transfer for blue-LED lighting. Journal of Luminescence, 2011, 131, 2387-2390.	3.1	12
178	The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor. Journal of Environmental Management, 2021, 292, 112762.	7.8	12
179	Characterization and Photoluminescence Properties of Eu ³⁺ Doped 3CdO-Al ₂ O ₃ -8SiO ₂ Amorphous System for White Light-Emitting Diodes. Journal of Physical Chemistry C, 2009, 113, 493-495.	3.1	11
180	Near UV and blue-based LED fabricated with Ca8Zn(SiO4)4Cl2:Eu2+ as green-emitting phosphor. Optical Materials, 2011, 34, 261-264.	3.6	11

#	Article	IF	Citations
181	Spectral tuning and energy transfer in a potential fluorescent lamp phosphor BaMg2Al6Si9O30:Eu2+. Journal of Luminescence, 2012, 132, 2439-2442.	3.1	11
182	Forced oscillations with linear and nonlinear damping. American Journal of Physics, 2016, 84, 32-37.	0.7	11
183	Multicolor emission leading by energy transfer between Dy3+ and Eu3+ in wolframite InNbTiO6. Journal of Luminescence, 2020, 227, 117578.	3.1	11
184	Emission from Storage Phosphors That Glow Even in Bright Ambient Light. Physical Review Applied, 2021, 15, .	3.8	11
185	Temperature-dependent photoconductivity of Ce3+-doped SrAl2O4. Journal of Luminescence, 2006, 119-120, 55-58.	3.1	10
186	Efficient energy transfer and photoluminescent characteristics in SrAl ₁₂ O ₁₉ :Eu ²⁺ ,Cr ³⁺ nano-rods. Nanotechnology, 2007, 18, 445707.	2.6	10
187	Spectral modulation through controlling anions in nanocaged phosphors. Journal of Materials Chemistry C, 2013, 1, 7896.	5.5	10
188	Multipath optical thermometry realized in CaSc ₂ O ₄ : Yb ³⁺ /Er ³⁺ with high sensitivity and superior resolution. Journal of the American Ceramic Society, 2021, 104, 2711-2720.	3.8	10
189	Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1500Ånm. Journal of the American Ceramic Society, 2021, 104, 5784-5793.	3.8	10
190	Solving probability reasoning based on DNA strand displacement and probability modules. Computational Biology and Chemistry, 2017, 71, 274-279.	2.3	10
191	Converting wastes to resource: Utilization of dewatered municipal sludge for calcium-based biochar adsorbent preparation and land application as a fertilizer. Chemosphere, 2022, 298, 134302.	8.2	10
192	Temperature effects in nonequilibrium phonon decay. Physical Review Letters, 1991, 67, 2807-2809.	7.8	9
193	Behavior of Mn2+ ions in the trapping process of SrMg(SiO3)2:Mn,Dy. Journal of Luminescence, 2007, 122-123, 381-384.	3.1	9
194	Mn2+ activated red long persistent phosphors in BaMg2Si2O7. Journal of Luminescence, 2007, 122-123, 914-916.	3.1	9
195	Dual Color Emissions of Sr _{2â°'x} Ca _x P ₂ O ₇ : Eu ²⁺ , Mn ²⁺ for near UV Excitation. Journal of the Electrochemical Society, 2012, 159, F56-F61.	2.9	9
196	Long lasting blue phosphorescence and photostimulated luminescence in 12CaOâ<7Al2O3:Eu thin films grown by pulsed laser deposition. Optical Materials, 2014, 36, 1771-1775.	3. 6	9
197	Gaussian Process Regression and Bayesian Inference Based Operating Performance Assessment for Multiphase Batch Processes. Industrial & Engineering Chemistry Research, 2018, 57, 7232-7244.	3.7	9
198	Anharmonic interactions of nonequilibrium phonons inLiYF4:Pr3+. Physical Review B, 1992, 46, 8168-8172.	3.2	8

#	Article	IF	CITATIONS
199	The phosphorescent properties of Er3+ in Gd2O2S by two-step absorption. Journal Physics D: Applied Physics, 2007, 40, 7519-7522.	2.8	8
200	Effect of Boron Nitride (BN) on Luminescent Properties of <scp><scp>Y₃Al₅O₁₂</scp></scp> Phosphors and their White Lightâ€Emitting Diode Characteristics. International Journal of Applied Ceramic Technology, 2013, 10, 610-616.	2.1	8
201	Intense red up-conversion luminescence and dynamical processes observed in Sc ₂ O ₃ :Yb ³⁺ ,Er ³⁺ nanostructures. Dalton Transactions, 2017, 46, 15954-15960.	3.3	8
202	White-light flashlight activated up-conversion luminescence for ultraviolet-B tagging. Optics Letters, 2020, 45, 2720.	3.3	8
203	Ultraviolet glow of Lu3Ga5O12:Bi3+ phosphor in indoor lighting. Journal of Luminescence, 2022, 248, 118932.	3.1	8
204	Explicit effects of 4f5 dconfiguration on 4f2 ↠4f2 electric dipole transitions in Pr3+-doped SrAl 12019. Physical Review B, 2006, 74, .	3.2	7
205	Energy transfer in Pr3+- and Cr3+-codoped SrAl12O19 system. Journal of Luminescence, 2006, 119-120, 332-336.	3.1	7
206	Optical properties of Er3+-doped telluride glasses with P2O5 addition for $1.5 \hat{l} \frac{1}{4}$ m broadband amplifiers. Journal of Luminescence, 2007, 122-123, 967-969.	3.1	7
207	Ground-state measurement of Pr3+ in Y2O3 by photoconductivity. Physics of the Solid State, 2008, 50, 1674-1676.	0.6	7
208	Demonstration of enhanced population feeding of the 1.53Î⅓m emitting level of Er3+ in TeO2–WO3–Li2O–P2O5 glasses using upconversion luminescence spectroscopy. Journal of Applied Physics, 2008, 103, 063107.	2.5	7
209	Digestive Ripening-Mediated Growth of NaYbF ₄ :Tm@NaYF ₄ Core–Shell Nanoparticles for Bioimaging. ACS Applied Nano Materials, 2020, 3, 10049-10056.	5.0	7
210	Phonon dynamics in YAG:Pr3+. Journal of Luminescence, 1992, 53, 44-47.	3.1	6
211	Red photoluminescence due to energy transfer from Eu2+to Cr3+in Sr3Al10SiO20–SrAl12O19mixed phases. Journal Physics D: Applied Physics, 2008, 41, 065104.	2.8	6
212	Enhanced absorption of Sr3Lu2(BO3)4:Ce3+,Tb3+ phosphor with energy transfer for UV-pumped white LEDs. Journal of Alloys and Compounds, 2019, 789, 215-220.	5 . 5	6
213	Optical Doppler Tomography: Imaging in vivo Blood Flow Dynamics Following Pharmacological Intervention and Photodynamic Therapy. Photochemistry and Photobiology, 1998, 67, 56.	2.5	6
214	Photoluminescent CdTe Quantum Dot-Polynitroxylated Albumin Composites for Glutathione Detection. ACS Applied Nano Materials, 2022, 5, 4677-4687.	5.0	6
215	Thermally enhanced near-infrared luminescence in CaSc2O4: Yb3+/Nd3+ nanorods for temperature sensing and photothermal conversion. Ceramics International, 2022, 48, 23436-23443.	4.8	6
216	K2SO4 nanowires a good nanostructured template. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 222-227.	2.1	5

#	ARTICLE erizing intensity of <mml:math <="" altimg="sil.gif" overflow="scroll" th="" xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiViLSchema"><th>IF</th><th>Citations</th></mml:math>	IF	Citations
217	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/MathML" xmlns:t	2.1	5
218	Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates. Journal of Luminescence, 2016, 169, 622-626.	3.1	5
219	Conceptual Ultraviolet Light Source Based on Up onversion Luminescence. Advanced Photonics Research, 2022, 3, .	3.6	5
220	A twinned PbTe film induced by the $7\tilde{A}$ – 7 reconstruction of Si(111). Journal of Crystal Growth, 2004, 273, 156-160.	1.5	4
221	Selection rules for 4f2â†'4f2 electric dipole transitions by considering mixing with 4f5d components of Pr3+ in SrAl12O19. Journal of Luminescence, 2006, 119-120, 492-495.	3.1	4
222	Homogeneous Precipitation Synthesis and Lowâ€Voltage Cathodoluminescence of <scp><scp>SnO₂:Eu³⁺</scp></scp> Phosphors for Field Emission Displays. International Journal of Applied Ceramic Technology, 2013, 10, 625-630.	2.1	4
223	<p>Nitroxide-Modified Protein-Incorporated Nanoflowers with Dual Enzyme-Like Activities</p> . International Journal of Nanomedicine, 2020, Volume 15, 263-273.	6.7	4
224	Sunlight stimulated solar-blind ultraviolet phosphor. Physical Review Research, 2022, 4, .	3.6	4
225	Spectroscopic study of 8-hydroxyquinoline-5-sulfonic-acid-doped sol-gel transition metal ion optrode materials. Journal of Non-Crystalline Solids, 1994, 178, 52-57.	3.1	3
226	<title>Nonlinear absorption and emission of excited states in metalloporphyrin-doped sol gels</title> ., 1997, , .		3
227	Calculating line intensities of 1S0 emission through standard and modified Judd–Ofelt theories in Pr3+-doped CaAl 12O 19 and SrAl 12O 19. Journal of Physics Condensed Matter, 2010, 22, 155501.	1.8	3
228	Finite-Time Composite Position Control for a Disturbed Pneumatic Servo System. Mathematical Problems in Engineering, 2016, 2016, 1-10.	1.1	3
229	Zeolite biofilm aeration filter plays a preâ€nitritation role in autotrophic nitrogen removal from iron oxide red wastewater. Journal of Chemical Technology and Biotechnology, 2020, 95, 3261-3269.	3.2	3
230	Exciton luminescence in orthorhombic-structure MnF2 epitaxial films. Physics of the Solid State, 2002, 44, 1455-1458.	0.6	2
231	Up-converted emission of colloidal nanocrystals containing dendrimers. Journal of Luminescence, 2004, 108, 355-358.	3.1	1
232	Calculating line intensities of 1SO emission through mixing with 4f5d components in Pr3+-doped SrAl12O19. Journal of Luminescence, 2007, 122-123, 434-436.	3.1	1
233	Hydrothermal Synthesis and Luminescent Properties of Microtubes Constructed by Fluffy Zns:Mn ²⁺ with Nanostructures. Journal of Nanoscience and Nanotechnology, 2008, 8, 1326-1329.	0.9	1
234	Behavior of TiO ₂ Thin Film in a Nanocapacitor. Journal of Nanoscience and Nanotechnology, 2008, 8, 1234-1237.	0.9	1

#	Article	IF	Citations
235	Characteristic emission in glutaraldehyde polymerized hemoglobin. Journal of Luminescence, 2011, 131, 461-464.	3.1	1
236	Design of Coil Winding Insulation Voltage Testing and Corona Signal Extraction System., 2019,,.		1
237	Doppler Optical Coherence Tomography. , 2001, , 203-236.		1
238	Luminescence Behavior of Organo-Ruthenium Complexes Entrapped Within Sol-Gel Hosts. Materials Research Society Symposia Proceedings, 1993, 329, 285.	0.1	0
239	Energy Transfer And Emission Processes In Sol-Gel Materials Doped With Europium (III) Complexes. Materials Research Society Symposia Proceedings, 1993, 328, 745.	0.1	0
240	Luminescence Effects in Gels Containing Organo-Aluminum Complexes. Materials Research Society Symposia Proceedings, 1994, 346, 569.	0.1	0
241	Optical Birefringence Imaging of Dentin and Enamel. , 1998, , AMC6.		0
242	Direct calculation of transition intensities in LiYF4: Nd3+. Physics of the Solid State, 2008, 50, 1656-1659.	0.6	0
243	Direct calculation of 4f ³ –4f ³ transition intensities in Nd ³⁺ -doped YPO ₄ system involving explicit effects of 4f ² 5d configuration. Journal of Physics Condensed Matter, 2009, 21, 095503.	1.8	0