
Florence Kyndt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 2003, 421, 634-639.	27.8	926
2	An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm, 2010, 7, 33-46.	0.7	649
3	Cardiac conduction defects associate with mutations in SCN5A. Nature Genetics, 1999, 23, 20-21.	21.4	549
4	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genetics, 2013, 45, 1044-1049.	21.4	467
5	Novel SCN5A Mutation Leading Either to Isolated Cardiac Conduction Defect or Brugada Syndrome in a Large French Family. Circulation, 2001, 104, 3081-3086.	1.6	348
6	Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nature Genetics, 2014, 46, 826-836.	21.4	281
7	SCN5A Mutations and the Role of Genetic Background in the Pathophysiology of Brugada Syndrome. Circulation: Cardiovascular Genetics, 2009, 2, 552-557.	5.1	262
8	Mutations in the Gene Encoding Filamin A as a Cause for Familial Cardiac Valvular Dystrophy. Circulation, 2007, 115, 40-49.	1.6	257
9	Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Human Molecular Genetics, 2012, 21, 2759-2767.	2.9	227
10	Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm, 2009, 6, 341-348.	0.7	224
11	Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenègre disease. Journal of the American College of Cardiology, 2003, 41, 643-652.	2.8	158
12	Multifocal Ectopic Purkinje-Related Premature Contractions. Journal of the American College of Cardiology, 2012, 60, 144-156.	2.8	156
13	Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Human Molecular Genetics, 2015, 24, 2757-2763.	2.9	130
14	Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nature Genetics, 2015, 47, 1206-1211.	21.4	103
15	Mapping of X-Linked Myxomatous Valvular Dystrophy to Chromosome Xq28. American Journal of Human Genetics, 1998, 62, 627-632.	6.2	86
16	Screening for Copy Number Variation in Genes Associated With the Long QT Syndrome. Journal of the American College of Cardiology, 2011, 57, 40-47.	2.8	78
17	Cardiac characteristics and long-term outcome in Andersen-Tawil syndrome patients related to KCNJ2 mutation. Europace, 2013, 15, 1805-1811.	1.7	70
18	Mutations in a Dominant-Negative Isoform Correlate with Phenotype in Inherited Cardiac Arrhythmias. American Journal of Human Genetics, 1999, 64, 1015-1023.	6.2	69

FLORENCE KYNDT

#	Article	IF	CITATIONS
19	Response to intravenous ajmaline: a retrospective analysis of 677 ajmaline challenges. Europace, 2009, 11, 1345-1352.	1.7	64
20	Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. International Journal of Cardiology, 2016, 207, 349-358.	1.7	62
21	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	2.4	57
22	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	21.4	55
23	Robustness and relevance of predictive score in sudden cardiac death for patients with Brugada syndrome. European Heart Journal, 2021, 42, 1687-1695.	2.2	53
24	Clinical characteristics of a familial inherited myxomatous valvular dystrophy mapped to Xq28. Journal of the American College of Cardiology, 2000, 35, 1890-1897.	2.8	48
25	New Family With Catecholaminergic Polymorphic Ventricular Tachycardia Linked to the Triadin Gene. Journal of Cardiovascular Electrophysiology, 2015, 26, 1146-1150.	1.7	45
26	New insights into mitral valve dystrophy: a Filamin-A genotype–phenotype and outcome study. European Heart Journal, 2018, 39, 1269-1277.	2.2	44
27	<i>SCN5A</i> Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in <i>SCN5A</i> Families. Circulation Genomic and Precision Medicine, 2020, 13, e002911.	3.6	41
28	Filamin-A-Related Myxomatous Mitral Valve Dystrophy: Genetic, Echocardiographic and Functional Aspects. Journal of Cardiovascular Translational Research, 2011, 4, 748-756.	2.4	39
29	Sodium-channel blocker challenge in the familial screening of Brugada syndrome: Safety and predictors of positivity. Heart Rhythm, 2017, 14, 1442-1448.	0.7	36
30	SCN5A mutations in 442 neonates and children: genotype–phenotype correlation and identification of higher-risk subgroups. European Heart Journal, 2018, 39, 2879-2887.	2.2	33
31	Clinical Yield of Familial Screening After Sudden Death in Young Subjects. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	29
32	Age at diagnosis of Brugada syndrome: Influence on clinical characteristics and risk of arrhythmia. Heart Rhythm, 2020, 17, 743-749.	0.7	27
33	Clinical presentation and follow-up of women affected by Brugada syndrome. Heart Rhythm, 2019, 16, 260-267.	0.7	26
34	Dynamic analysis of the QT interval in long QT1 syndrome patients with a normal phenotype. European Heart Journal, 2001, 22, 410-422.	2.2	25
35	Complex Brugada syndrome inheritance in a family harbouring compound SCN5A and CACNA1C mutations. Basic Research in Cardiology, 2014, 109, 446.	5.9	20
36	Cardiac Phenotype and Long-Term Follow-Up of Patients With Mutations in NKX2-5 Gene. Journal of the American College of Cardiology, 2016, 68, 2389-2390.	2.8	20

FLORENCE KYNDT

#	Article	IF	CITATIONS
37	Value of the sodium-channel blocker challenge in Brugada syndrome. International Journal of Cardiology, 2017, 245, 178-180.	1.7	17
38	Sodium channel blocker tests allow a clear distinction of electrophysiological characteristics and prognosis in patients with a type 2 or 3 Brugada electrocardiogram pattern. Heart Rhythm, 2008, 5, 1561-1564.	0.7	16
39	Mental stress test: a rapid, simple, and efficient test to unmask long QT syndrome. Europace, 2018, 20, 2014-2020.	1.7	15
40	Prenatal diagnosis of Larsen syndrome caused by a mutation in the filamin B gene. Prenatal Diagnosis, 2009, 29, 172-174.	2.3	14
41	Identification of a strong genetic background for progressive cardiac conduction defect by epidemiological approach. Heart, 2012, 98, 1305-1310.	2.9	13
42	The alternatively spliced LRRFIP1 Isoform-1 is a key regulator of the Wnt/\hat{l}^2 -catenin transcription pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1142-1152.	4.1	13
43	Incomplete Timothy syndrome secondary to a mosaic mutation of the <i>CACNA1C</i> gene diagnosed using nextâ€generation sequencing. American Journal of Medical Genetics, Part A, 2017, 173, 531-536.	1.2	8
44	Familial Catecholamine-Induced QT Prolongation in Unexplained Sudden Cardiac Death. Journal of the American College of Cardiology, 2017, 69, 1642-1643.	2.8	7
45	A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity. Clinical and Translational Medicine, 2021, 11, e609.	4.0	7
46	Cosegregation of the Marfan syndrome and the long QT syndrome in the same family leads to a severe cardiac phenotype. American Journal of Cardiology, 2003, 91, 635-637.	1.6	1
47	Brugada Syndrome and Nav1.5. Cardiac Electrophysiology Clinics, 2014, 6, 715-721.	1.7	0
48	Number of electrocardiogram leads in the diagnosis of spontaneous Brugada syndrome. Archives of Cardiovascular Diseases, 2020, 113, 152-158.	1.6	0
49	Genetic Testing for Inheritable Cardiac Channelopathies. Cardiac and Vascular Biology, 2018, , 323-358.	0.2	0