
Jue D Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7900540/publications.pdf Version: 2024-02-01

LUE D WANC

#	Article	IF	CITATIONS
1	The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in <i>Bacillus</i> . Nucleic Acids Research, 2022, 50, 847-866.	14.5	19
2	<i>Bacillus subtilis</i> produces (p)ppGpp in response to the bacteriostatic antibiotic chloramphenicol to prevent its potential bactericidal effect. , 2022, 1, 101-113.		8
3	Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. ELife, 2021, 10, .	6.0	12
4	Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. Annual Review of Genetics, 2021, 55, 115-133.	7.6	46
5	The Alarmone (p)ppGpp Regulates Primer Extension by Bacterial Primase. Journal of Molecular Biology, 2021, 433, 167189.	4.2	4
6	Small Alarmone Synthetase SasA Expression Leads to Concomitant Accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis. Frontiers in Microbiology, 2020, 11, 2083.	3.5	30
7	The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p)ppGpp. Nature Communications, 2020, 11, 5388.	12.8	41
8	(p)ppGpp and c-di-AMP Homeostasis Is Controlled by CbpB in Listeria monocytogenes. MBio, 2020, 11, .	4.1	28
9	The roles of replication-transcription conflict in mutagenesis and evolution of genome organization. PLoS Genetics, 2020, 16, e1008987.	3.5	22
10	Molecular Mechanism of Regulation of the Purine Salvage Enzyme XPRT by the Alarmones pppGpp, ppGpp, and pGpp. Journal of Molecular Biology, 2020, 432, 4108-4126.	4.2	31
11	Toxin discovery reveals fresh ammunition for bacterial warfare. Nature, 2019, 575, 599-600.	27.8	0
12	Metabolic Remodeling during Biofilm Development of Bacillus subtilis. MBio, 2019, 10, .	4.1	93
13	Evolution of (p)ppGpp-HPRT regulation through diversification of an allosteric oligomeric interaction. ELife, 2019, 8, .	6.0	40
14	Sources of spontaneous mutagenesis in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 29-48.	5.2	50
15	Fatty Acid Availability Sets Cell Envelope Capacity and Dictates Microbial Cell Size. Current Biology, 2017, 27, 1757-1767.e5.	3.9	127
16	Nucleotide Second Messengers: (p)ppGpp and Cyclic Dinucleotides. , 2017, , .		0
17	Effects of amino acid starvation on <scp>RelA</scp> diffusive behavior in live <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2016, 99, 571-585.	2.5	27
18	The nature of mutations induced by replication–transcription collisions. Nature, 2016, 535, 178-181.	27.8	121

JUE D WANG

#	Article	IF	CITATIONS
19	Molecular Mechanism and Evolution of Guanylate Kinase Regulation by (p)ppGpp. Molecular Cell, 2015, 57, 735-749.	9.7	88
20	Diversity in (p)ppGpp metabolism and effectors. Current Opinion in Microbiology, 2015, 24, 72-79.	5.1	175
21	From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis. Journal of Bacteriology, 2015, 197, 2908-2919.	2.2	88
22	DksA Guards Elongating RNA Polymerase against Ribosome-Stalling-Induced Arrest. Molecular Cell, 2014, 53, 766-778.	9.7	63
23	Failsafe Mechanisms Couple Division and DNA Replication in Bacteria. Current Biology, 2014, 24, 2149-2155.	3.9	46
24	Replication of the <i><scp>E</scp>scherichia coli</i> chromosome in <scp>RN</scp> ase <scp>HI</scp> â€deficient cells: multiple initiation regions and fork dynamics. Molecular Microbiology, 2014, 91, 39-56.	2.5	70
25	Lowering GTP Level Increases Survival of Amino Acid Starvation but Slows Growth Rate for Bacillus subtilis Cells Lacking (p)ppGpp. Journal of Bacteriology, 2014, 196, 2067-2076.	2.2	54
26	GTP Dysregulation in Bacillus subtilis Cells Lacking (p)ppGpp Results in Phenotypic Amino Acid Auxotrophy and Failure To Adapt to Nutrient Downshift and Regulate Biosynthesis Genes. Journal of Bacteriology, 2014, 196, 189-201.	2.2	90
27	Doseâ€dependent reduction of replication elongation rate by (p)pp <scp>G</scp> pp in <i><scp>E</scp>scherichia coli</i> and <i><scp>B</scp>acillus subtilis</i> . Molecular Microbiology, 2013, 88, 93-104.	2.5	55
28	Basal Levels of (p)ppGpp in Enterococcus faecalis: the Magic beyond the Stringent Response. MBio, 2013, 4, e00646-13.	4.1	105
29	Binding Mechanism of Metalâ‹NTP Substrates and Stringent-Response Alarmones to Bacterial DnaG-Type Primases. Structure, 2012, 20, 1478-1489.	3.3	73
30	Direct Regulation of GTP Homeostasis by (p)ppGpp: A Critical Component of Viability and Stress Resistance. Molecular Cell, 2012, 48, 231-241.	9.7	271
31	Replication–transcription conflicts in bacteria. Nature Reviews Microbiology, 2012, 10, 449-458.	28.6	190
32	Co-Orientation of Replication and Transcription Preserves Genome Integrity. PLoS Genetics, 2010, 6, e1000810.	3.5	160
33	The Transcription Factor DksA Prevents Conflicts between DNA Replication and Transcription Machinery. Cell, 2010, 141, 595-605.	28.9	141
34	Metabolism, cell growth and the bacterial cell cycle. Nature Reviews Microbiology, 2009, 7, 822-827.	28.6	283
35	Control of bacterial transcription, translation and replication by (p)ppGpp. Current Opinion in Microbiology, 2008, 11, 100-105.	5.1	357
36	High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies. PLoS Genetics, 2008, 4, e1000139.	3.5	202

JUE D WANG

#	Article	IF	CITATIONS
37	Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5608-5613.	7.1	99
38	Nutritional Control of Elongation of DNA Replication by (p)ppGpp. Cell, 2007, 128, 865-875.	28.9	267
39	Characterization of the Global Transcriptional Responses to Different Types of DNA Damage and Disruption of Replication in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 5595-5605.	2.2	93
40	Multicopy Plasmids Affect Replisome Positioning in Bacillus subtilis. Journal of Bacteriology, 2004, 186, 7084-7090.	2.2	19
41	Directed Evolution of Substrate-Optimized GroEL/S Chaperonins. Cell, 2002, 111, 1027-1039.	28.9	137
42	Thinking outside the box: new insights into the mechanism of GroEL-mediated protein folding. , 1999, 6, 597-600.		17
43	GroEL-GroES-mediated protein folding requires an intact central cavity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12163-12168.	7.1	62