Ahmed Fouzi Tarchoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7900117/publications.pdf

Version: 2024-02-01

218677 214800 2,471 53 26 47 citations g-index h-index papers 53 53 53 1235 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Making progress towards promising energetic cellulosic microcrystals developed from alternative lignocellulosic biomasses. Journal of Energetic Materials, 2024, 42, 97-122.	2.0	14
2	Mordenite zeolite for scavenging nitroxide radicals and its effect on the thermal decomposition of nitrocellulose. Journal of Energetic Materials, 2023, 41, 510-529.	2.0	8
3	Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups: Towards the next generation of energetic biopolymers. Defence Technology, 2022, 18, 537-546.	4.2	27
4	Kevlar fabric reinforced polybenzoxazine composites filled with silane treated microcrystalline cellulose in the interlayers: The next generation of multi-layered armor panels. Defence Technology, 2022, 18, 2000-2007.	4.2	9
5	Valorization of Esparto Grass Cellulosic Derivatives for the Development of Promising Energetic Azidodeoxy Biopolymers: Synthesis, Characterization and Isoconversional Thermal Kinetic Analysis. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.6	23
6	Towards investigating the characteristics and thermal kinetic behavior ofÂemergent nanostructured nitrocellulose prepared using various sulfonitric media. Journal of Nanostructure in Chemistry, 2022, 12, 963-977.	9.1	27
7	Exploration of palm fronds as a prominent alternative resource for the production of energetic cellulose-rich biopolymers. Materials Today: Proceedings, 2022, 53, 31-35.	1.8	7
8	A new experimental way for the monitoring of the real/equivalent in-service-time of double base rocket propellant by coupling VST and PCA. Defence Technology, 2021, 17, 440-449.	4.2	18
9	Effect of the Delignification Process on the Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Extracted from Date Palm Fronds. Waste and Biomass Valorization, 2021, 12, 2779-2793.	3.4	49
10	Advanced hybrid materials from epoxy, oxidized UHMWPE fibers and silane surface modified silicon nitride nanoparticles. High Performance Polymers, 2021, 33, 440-450.	1.8	6
11	Synthesis, characterization and thermal decomposition behavior of a novel HNTO/AN co-crystal as a promising rocket propellant oxidizer. Chemical Engineering Journal, 2021, 417, 128010.	12.7	50
12	Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Isolated from Esparto Grass Using Different Delignification Approaches. Journal of Polymers and the Environment, 2021, 29, 130-142.	5.0	56
13	Chapter 5. Cellulose Nanoparticles: Extractions. , 2021, , 113-148.		11
14	Investigation of the Thermal Aging Behavior of Pyrotechnic Tracer Composition by Spectroscopic Techniques Coupled with Principal Component Analysis. Propellants, Explosives, Pyrotechnics, 2021, 46, 1155-1166.	1.6	7
15	Preparation of amino-functionalized microcrystalline cellulose from Arundo Donax L. and its effect on the curing behavior of bisphenol A–based benzoxazine. Thermochimica Acta, 2021, 698, 178882.	2.7	26
16	Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose, 2021, 28, 6107-6123.	4.9	35
17	Synthesis and characterization of new insensitive and high-energy dense cellulosic biopolymers. Fuel, 2021, 292, 120347.	6.4	29
18	Towards understanding the effect of humidity on the degradation of pyrotechnic compositions through spectroscopic data combined with chemometric methods. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1547-1559.	1.2	3

#	Article	IF	CITATIONS
19	Effect of silane modified microcrystalline cellulose on the curing kinetics, thermo-mechanical properties and thermal degradation of benzoxazine resin. International Journal of Biological Macromolecules, 2021, 180, 194-202.	7.5	41
20	The effect of iron decorated MWCNTs and ironâ€ionic liquid decorated MWCNTs onto thermal decomposition of ammonium perchlorate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1607-1619.	1.2	25
21	Morphological, thermal and mechanical properties of benzoxazine resin reinforced with alkali treated alfa fibers. Industrial Crops and Products, 2021, 165, 113423.	5.2	21
22	New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: their synthesis, characterization, and non-isothermal decomposition kinetics. New Journal of Chemistry, 2021, 45, 5099-5113.	2.8	35
23	Stability Assessment for Double Base Rocket Propellant During Long Natural/Artificial Aging Using Various Methods and Kinetic Modeling. Materials Horizons, 2021, , 93-122.	0.6	5
24	Synthesis and Characterization of Microcrystalline Cellulose from Giant Reed Using Different Delignification Processes. Materials Horizons, 2021, , 173-187.	0.6	5
25	Optimized energetic HNTO/AN co-crystal and its thermal decomposition kinetics in the presence of energetic coordination nanomaterials based on functionalized graphene oxide and cobalt. RSC Advances, 2021, 11, 35287-35299.	3.6	29
26	Insight into the Effect of Moisture and Thermal Aging on the Degradation of a Pyrotechnic Igniter Composition through Thermogravimetric Kinetics Coupled with Deconvolution Approach. ChemistrySelect, 2021, 6, 14060-14070.	1.5	6
27	Compatibility assessment and decomposition kinetics of nitrocellulose with eutectic mixture of organic stabilizers. Journal of Energetic Materials, 2020, 38, 48-67.	2.0	29
28	Preparation and characterization of a new high-performance polymer composite and its application as a lead-free polymer-based projectile. High Performance Polymers, 2020, 32, 550-558.	1.8	4
29	Compatibility of nitrocellulose with aniline-based compounds and their eutectic mixtures. Journal of Thermal Analysis and Calorimetry, 2020, 141, 941-955.	3.6	16
30	Characterization of raw and treated Arundo donax L. cellulosic fibers and their effect on the curing kinetics of bisphenol A-based benzoxazine. International Journal of Biological Macromolecules, 2020, 164, 2931-2943.	7.5	32
31	Effect of Kraft lignins on the stability and thermal decomposition kinetics of nitrocellulose. Thermochimica Acta, 2020, 692, 178732.	2.7	21
32	A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: Synthesis and characterization. Carbohydrate Polymers, 2020, 249, 116820.	10.2	41
33	Synthesis, Characterization, and Thermal Decomposition Kinetics of Nitrogen-Rich Energetic Biopolymers from Aminated Giant Reed Cellulosic Fibers. Industrial & Engineering Chemistry Research, 2020, 59, 22677-22689.	3.7	52
34	Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry, 2020, 8, 392.	3.6	586
35	On the mechanical and morphological properties of highly performant composite laminates based on epoxy resin and oxidized ultrahigh-molecular-weight polyethylene fibers. High Performance Polymers, 2020, 32, 992-1000.	1.8	8
36	Nonâ€Isothermal Curing Kinetics of Alkaliâ€Treated Alfa Fibers/Polybenzoxazine Composites Using Differential Scanning Calorimetry. ChemistrySelect, 2020, 5, 5374-5386.	1.5	24

#	Article	IF	Citations
37	New insensitive nitrogen-rich energetic polymers based on amino-functionalized cellulose and microcrystalline cellulose: Synthesis and characterization. Fuel, 2020, 277, 118258.	6.4	41
38	Tetrazole-functionalized microcrystalline cellulose: A promising biopolymer for advanced energetic materials. Chemical Engineering Journal, 2020, 400, 125960.	12.7	64
39	Organosolv lignins as new stabilizers for cellulose nitrate: Thermal behavior and stability assessment. International Journal of Biological Macromolecules, 2020, 164, 794-807.	7.5	36
40	Synthesis and characterization of \hat{l}_{\pm} -Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochimica Acta, 2020, 686, 178570.	2.7	61
41	Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization. Waste and Biomass Valorization, 2020, 11, 6541-6553.	3.4	68
42	A New Procedure for Stability Control of Homogeneous Solid Propellants by Combination of Vacuum Stability Test, FTIR and PCA. Propellants, Explosives, Pyrotechnics, 2020, 45, 1088-1102.	1.6	11
43	Cellulose Fibers and Nanocrystals: Preparation, Characterization, and Surface Modification. , 2020, , 171-190.		4
44	Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose, 2019, 26, 7635-7651.	4.9	117
45	Differentiation of stabilized nitrocellulose during artificial aging: Spectroscopy methods coupled with principal component analysis. Journal of Chemometrics, 2019, 33, e3163.	1.3	48
46	Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. International Journal of Biological Macromolecules, 2019, 138, 837-845.	7. 5	156
47	A Promising Energetic Polymer from <i>Posidonia oceanica</i> Brown Algae: Synthesis, Characterization, and Kinetic Modeling. Macromolecular Chemistry and Physics, 2019, 220, 1900358.	2.2	88
48	Organic eutectic mixture as efficient stabilizer for nitrocellulose: Kinetic modeling and stability assessment. Thermochimica Acta, 2019, 673, 78-91.	2.7	87
49	Analytical Methods for Stability Assessment of Nitrate Esters-Based Propellants. Critical Reviews in Analytical Chemistry, 2019, 49, 415-438.	3.5	75
50	New Insights on the Compatibility of Nitrocellulose with Anilineâ€Based Compounds. Propellants, Explosives, Pyrotechnics, 2019, 44, 970-979.	1.6	52
51	Effect of organic eutectic on nitrocellulose stability during artificial aging. Journal of Energetic Materials, 2019, 37, 387-406.	2.0	44
52	On the preparation and properties investigations of highly performant MXene (Ti ₃ C ₂ (OH) ₂) nanosheets-reinforced phthalonitrile nanocomposites. Advanced Composites Letters, 2019, 28, 2633366X1989062.	1.3	10
53	Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. Journal of Materials Science, 2018, 53, 100-123.	3.7	124