Marco M Domingues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7900037/publications.pdf Version: 2024-02-01

MARCO M DOMINCHES

#	Article	IF	CITATIONS
1	Nanomechanics of Blood Clot and Thrombus Formation. Annual Review of Biophysics, 2022, 51, 201-221.	4.5	5
2	Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops. ELife, 2022, 11, .	2.8	15
3	Fibrin protofibril packing and clot stability are enhanced by extended knob-hole interactions and catch-slip bonds. Blood Advances, 2022, , .	2.5	4
4	Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper (<i>Bothrops atrox</i>). Journal of Natural Products, 2021, 84, 1787-1798.	1.5	14
5	Lipid membrane-based therapeutics and diagnostics. Archives of Biochemistry and Biophysics, 2021, 704, 108858.	1.4	4
6	Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability, and resistance to fibrinolysis. ELife, 2021, 10, .	2.8	13
7	Sensing adhesion forces between erythrocytes and γ' fibrinogen, modulating fibrin clot architecture and function. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 909-918.	1.7	13
8	Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. Journal of Biological Chemistry, 2018, 293, 1536-1549.	1.6	83
9	Impact of γ′γ′ fibrinogen interaction with red blood cells on fibrin clots. Nanomedicine, 2018, 13, 2491-2505.	1.7	4
10	New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins. Frontiers in Microbiology, 2017, 8, 775.	1.5	37
11	Polyphosphate delays fibrin polymerisation and alters the mechanical properties of the fibrin network. Thrombosis and Haemostasis, 2016, 116, 897-903.	1.8	17
12	The (Patho)physiology of Fibrinogen γ′. Seminars in Thrombosis and Hemostasis, 2016, 42, 344-355.	1.5	28
13	Thrombin and fibrinogen γ′ impact clot structure by marked effects on intrafibrillar structure and protofibril packing. Blood, 2016, 127, 487-495.	0.6	53
14	The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism. Amino Acids, 2016, 48, 307-318.	1.2	7
15	Understanding Dengue Virus Capsid Protein Disordered N-Terminus and pep14-23-Based Inhibition. ACS Chemical Biology, 2015, 10, 517-526.	1.6	45
16	Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 543-551.	1.7	76
17	Antimicrobial Peptide rBPI21: A Translational Overview from Bench to Clinical Studies. Current Protein and Peptide Science, 2012, 13, 611-619.	0.7	22
18	Translocating the blood-brain barrier using electrostatics. Frontiers in Cellular Neuroscience, 2012, 6, 44.	1.8	54

MARCO M DOMINGUES

#	Article	IF	CITATIONS
19	Chemical Conjugation of the Neuropeptide Kyotorphin and Ibuprofen Enhances Brain Targeting and Analgesia. Molecular Pharmaceutics, 2011, 8, 1929-1940.	2.3	33
20	Using zeta-potential measurements to quantify peptide partition to lipid membranes. European Biophysics Journal, 2011, 40, 481-487.	1.2	64
21	Isoelectric Point Determination for Glossoscolex paulistus Extracellular Hemoglobin: Oligomeric Stability in Acidic pH and Relevance to Proteinâ^'Surfactant Interactions. Langmuir, 2010, 26, 9794-9801.	1.6	55
22	Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: Determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies. Biophysical Chemistry, 2010, 152, 128-138.	1.5	25
23	Fold-Unfold Transitions in the Selectivity and Mechanism of Action of the N-Terminal Fragment of the Bactericidal/Permeability-Increasing Protein (rBPI21). Biophysical Journal, 2009, 96, 987-996.	0.2	18
24	rBPI21 Promotes Lipopolysaccharide Aggregation and Exerts Its Antimicrobial Effects by (Hemi)fusion of PG-Containing Membranes. PLoS ONE, 2009, 4, e8385.	1.1	69
25	What can light scattering spectroscopy do for membraneâ€active peptide studies?. Journal of Peptide Science, 2008, 14, 394-400.	0.8	75
26	Dynamic Light Scattering and Optical Absorption Spectroscopy Study of pH and Temperature Stabilities of the Extracellular Hemoglobin of Glossoscolex paulistus. Biophysical Journal, 2008, 94, 2228-2240.	0.2	52

Dynamic Light Scattering and Optical Absorption Spectroscopy Study of pH and Temperature Stabilities of the Extracellular Hemoglobin of Glossoscolex paulistus. Biophysical Journal, 2008, 94, 2228-2240. 26 0.2