
Dahong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7899987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry, 2018, 10, 974-980.	6.6	781
2	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 10246-10250.	7.2	619
3	An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 6073-6076.	7.2	568
4	Tailoring the d-Band Centers Endows (Ni _{<i>x</i>} Fe _{1–<i>x</i>}) ₂ P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catalysis, 2020, 10, 9086-9097.	5.5	417
5	Templateâ€Based Engineering of Carbonâ€Doped Co ₃ O ₄ Hollow Nanofibers as Anode Materials for Lithiumâ€lon Batteries. Advanced Functional Materials, 2016, 26, 1428-1436.	7.8	404
6	Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight. Applied Catalysis B: Environmental, 2018, 238, 284-293.	10.8	336
7	Template-Induced High-Crystalline g-C ₃ N ₄ Nanosheets for Enhanced Photocatalytic H ₂ Evolution. ACS Energy Letters, 2018, 3, 514-519.	8.8	259
8	Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Applied Catalysis B: Environmental, 2019, 244, 732-739.	10.8	204
9	High-efficiency Fe-Mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Applied Catalysis B: Environmental, 2019, 256, 117781.	10.8	161
10	Two-Dimensional Holey Co ₃ O ₄ Nanosheets for High-Rate Alkali-Ion Batteries: From Rational Synthesis to in Situ Probing. Nano Letters, 2017, 17, 3907-3913.	4.5	158
11	A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy, 2019, 64, 103955.	8.2	156
12	Insight into the Activity and Stability of Rh _{<i>x</i>} P Nano-Species Supported on g-C ₃ N ₄ for Photocatalytic H ₂ Production. ACS Catalysis, 2020, 10, 458-462.	5.5	154
13	An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 6181-6184.	1.6	149
14	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 10403-10407.	1.6	139
15	Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. Journal of Materials Chemistry A, 2017, 5, 23744-23752.	5.2	119
16	Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Applied Catalysis B: Environmental, 2018, 226, 53-60.	10.8	94
17	Oxygen Vacancy Engineering of Bi ₂₄ O ₃₁ Cl ₁₀ for Boosted Photocatalytic CO ₂ Conversion. ChemSusChem, 2019, 12, 2740-2747.	3.6	92
18	Oxygen-Induced Bi ⁵⁺ -Self-Doped Bi ₄ V ₂ O ₁₁ with a p–n Homojunction Toward Promoting the Photocatalytic Performance. ACS Applied Materials & Interfaces, 2017, 9, 23748-23755.	4.0	88

DAHONG CHEN

#	Article	IF	CITATIONS
19	Doping effect of non-metal group in porous ultrathin g-C ₃ N ₄ nanosheets towards synergistically improved photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 5239-5245.	2.8	86
20	Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 407, 127180.	6.6	86
21	Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. Journal of Catalysis, 2019, 379, 1-9.	3.1	75
22	Mimicking π Backdonation in Ce-MOFs for Solar-Driven Ammonia Synthesis. ACS Applied Materials & Interfaces, 2019, 11, 29917-29923.	4.0	70
23	Integrating both homojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites to achieve an efficient photocatalyst for Cr(VI) reduction. Chemical Engineering Journal, 2018, 334, 334-343.	6.6	66
24	Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Applied Surface Science, 2020, 515, 146009.	3.1	63
25	Significantly Improving Lithium-Ion Transport via Conjugated Anion Intercalation in Inorganic Layered Hosts. ACS Nano, 2018, 12, 8670-8677.	7.3	54
26	Anchoring Active Pt ²⁺ /Pt ⁰ Hybrid Nanodots on g ₃ N ₄ Nitrogen Vacancies for Photocatalytic H ₂ Evolution. ChemSusChem, 2019, 12, 2029-2034.	3.6	54
27	Single-Atom Fe Triggers Superb CO ₂ Photoreduction on a Bismuth-Rich Catalyst. , 2021, 3, 364-371.		54
28	MOF-derived NiO/Ni architecture encapsulated into N-doped carbon nanotubes for advanced asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1553-1560.	3.0	52
29	In-situ synthesis of Z-scheme Ag2CO3/Ag/AgNCO heterojunction photocatalyst with enhanced stability and photocatalytic activity. Applied Surface Science, 2019, 464, 108-114.	3.1	52
30	Engineering Mesoporous Single Crystals Co-Doped Fe ₂ O ₃ for High-Performance Lithium Ion Batteries. Inorganic Chemistry, 2017, 56, 7642-7649.	1.9	50
31	Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation. Applied Catalysis B: Environmental, 2020, 264, 118416.	10.8	48
32	Dual role of nickel foam in NiCoAl-LDH ensuring high-performance for asymmetric supercapacitors. New Journal of Chemistry, 2019, 43, 3139-3145.	1.4	45
33	Enabling Nitrogen Fixation on Bi ₂ WO ₆ Photocatalyst by c-PAN Surface Decoration. ACS Sustainable Chemistry and Engineering, 2018, 6, 11190-11195.	3.2	42
34	Realizing the regulated carrier separation and exciton generation of Bi ₂₄ O ₃₁ Cl ₁₀ <i>via</i> a carbon doping strategy. Journal of Materials Chemistry A, 2018, 6, 24350-24357.	5.2	39
35	Dual Tuning of Composition and Nanostructure of Hierarchical Hollow Nanopolyhedra Assembled by NiCo-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 312-319.	2.5	39
36	Ag ₂ S-Modified ZnIn ₂ S ₄ Nanosheets for Photocatalytic H ₂ Generation. ACS Applied Nano Materials, 2020, 3, 11017-11024.	2.4	38

DAHONG CHEN

#	Article	IF	CITATIONS
37	Graphite Nanoplates Firmly Anchored with Well-dispersed Porous Zn3V2O8 Nanospheres: Rational Fabrication and Enhanced Lithium Storage Capability. Electrochimica Acta, 2017, 248, 140-149.	2.6	34
38	NiO Quantum Dot Modified TiO2 toward Robust Hydrogen Production Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 889-896.	3.2	34
39	Metal–organic framework derived amorphous VO _x coated Fe ₃ O ₄ /C hierarchical nanospindle as anode material for superior lithium-ion batteries. Nanoscale, 2020, 12, 16901-16909.	2.8	31
40	Formation of Porous Cuâ€Doped CoSe ₂ Connected by Nanoparticles for Efficient Lithium Storage. ChemElectroChem, 2017, 4, 2158-2163.	1.7	29
41	Formation of an oriented Bi ₂ WO ₆ photocatalyst induced by <i>in situ</i> Bi reduction and its use for efficient nitrogen fixation. Catalysis Science and Technology, 2019, 9, 5562-5566.	2.1	29
42	Vertically Co-oriented Mn-Metal–Organic Framework Grown on 2D Cation-Intercalated Manganese Oxide via a Self-sacrificing Template Process for a High-Performance Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3191-3199.	3.2	29
43	Limbic Inducted and Delocalized Effects of Diazole in Carbon Nitride Skeleton for Propelling Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 56273-56284.	4.0	29
44	Ni _x Fe _{1â^'x} B nanoparticle self-modified nanosheets as efficient bifunctional electrocatalysts for water splitting: experiments and theories. Journal of Materials Chemistry A, 2020, 8, 7360-7367.	5.2	28
45	A 1D Honeycombâ€Like Amorphous Zincic Vanadate for Stable and Fast Sodiumâ€Ion Storage. Small, 2020, 16, e1906214.	5.2	27
46	A novel anode comprised of C&N co-doped Co ₃ O ₄ hollow nanofibres with excellent performance for lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 19531-19535.	1.3	25
47	Design and fabrication of Co ₃ V ₂ O ₈ nanotubes by electrospinning as a high-performance anode for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5974-5980.	1.4	22
48	Engineering Reductive Iron on a Layered Double Hydroxide Electrocatalyst for Facilitating Nitrogen Reduction Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	19
49	Construction of 2D-composite HCa2Nb3O10/CaNb2O6 heterostructured photocatalysts with enhanced hydrogen production performance. New Journal of Chemistry, 2018, 42, 681-687.	1.4	18
50	Electric field effect in a Co ₃ O ₄ /TiO ₂ p–n junction for superior lithium-ion storage. Materials Chemistry Frontiers, 2019, 3, 909-915.	3.2	18
51	Metal–organic framework-induced formation of core–shell ZnCo ₂ O ₄ spheres composed by nanoparticles with enhanced lithium storage properties. New Journal of Chemistry, 2017, 41, 6973-6976.	1.4	17
52	Reduced Lithium/Nickel Disorder Degree of Sodiumâ€Đoped Lithiumâ€Rich Layered Oxides for Cathode Materials: Experiments and Calculations. ChemElectroChem, 2020, 7, 246-251.	1.7	17
53	High-performance reversible aqueous Zinc-Ion battery based on Zn2+ pre-intercalation alpha-manganese dioxide nanowires/carbon nanotubes. Journal of Colloid and Interface Science, 2022, 609, 557-565.	5.0	16
54	Freestanding nano-photoelectrode as a highly efficient and visible-light-driven photocatalyst for water-splitting. Journal of Materials Chemistry A, 2017, 5, 10651-10657.	5.2	15

DAHONG CHEN

#	Article	IF	CITATIONS
55	Shockley Partial Dislocation-Induced Self-Rectified 1D Hydrogen Evolution Photocatalyst. ACS Applied Materials & M	4.0	15
56	Intramolecular ï€-conjugated channel expansion achieved by doping cross-linked dopants into carbon nitride frameworks for propelling photocatalytic hydrogen evolution and mechanism insight. Inorganic Chemistry Frontiers, 2021, 9, 60-69.	3.0	15
57	Non-integer induced spontaneous polarization of highly efficient perovskite-based NBTO SCN photocatalysts. Journal of Materials Chemistry A, 2017, 5, 22984-22987.	5.2	14
58	Fabrication and study of the synergistic effect of Janus Ni ₂ P/Ni ₅ P ₄ embedded in N-doped carbon as efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 1023-1029.	2.1	13
59	Novel formation of Bi@BiFe-glycolate hollow spheres and their conversion into Bi2O3/BiFeO3 composite hollow spheres with enhanced activity and durability in visible photocatalysis. New Journal of Chemistry, 2018, 42, 10697-10703.	1.4	12
60	g ₃ N ₄ /SnS ₂ van der Waals Heterostructures Enabling Highâ€Efficiency Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	10
61	Electrospinning technique synthesis and electrical performances of one dimensional Ca2Co2O5 with hierarchical structure. Materials Letters, 2015, 158, 182-185.	1.3	8
62	Enhancing Co/Co ₂ VO ₄ Li-ion battery anode performances <i>via</i> 2D–2D heterostructure engineering. Nanoscale, 2021, 13, 13065-13071.	2.8	8
63	Hierarchical MnV2O4 double-layer hollow sandwich nanosheets confined by N-doped carbon layer as anode for high performance lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 538-545.	5.0	8
64	Nitrogen-doped biomass carbon fibers with surface encapsulated Co nanoparticles for electrocatalytic overall water-splitting. Chemical Communications, 2022, 58, 1772-1775.	2.2	8
65	Construction of Ag decorated 2D rGO/SnS2 nanostructure towards synergistically enabling overall water splitting. Chemical Engineering Journal, 2021, 433, 133198.	6.6	5
66	Template-free synthesis of Na _{0.5} Bi _{2.5} Ta ₂ O ₉ /Bi ₄ TaO ₈ Cl nano-heterostructures <i>via</i> a one-pot molten salt reaction for efficient photocatalysis. Journal of Materials Chemistry C, 2019, 7, 2936-2942.	2.7	4
67	Effect of anisotropic conductivity of Ag ₂ S-modified Zn _{<i>m</i>} In ₂ S _{3+<i>m</i>} (<i>m</i> = 1, 5) on the photocatalytic properties in solar hydrogen evolution. RSC Advances, 2021, 11, 26908-26914.	1.7	4
68	Sn and Na Coâ€doping to Suppress Voltage Decay of Liâ€rich Layered Oxide. ChemElectroChem, 2021, 8, 2315-2320.	1.7	4
69	Biocoordination Polymer Cross-Linking Structure to a 3D Star Topology Inorganic Photocatalyst Nanocrystal with Improved Hydrogen Evolution Performance. Inorganic Chemistry, 2018, 57, 13067-13070.	1.9	3
70	Ultrathin Porous Hexagonal Zn 3 V 3 O 8 /ZnO@Nâ€C Nanoplates Synthesized via a Temperatureâ€Controlled Phase Separation Method as Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2021, 8, 2100837.	1.9	1
71	Rücktitelbild: An Amorphous Nobleâ€Metalâ€Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions (Angew. Chem. 21/2018). Angewandte Chemie, 2018, 130, 6462-6462.	1.6	0
72	Reply to the â€~Comment on "Novel formation of Bi@BiFe-glycolate hollow spheres and their conversion into Bi2O3/BiFeO3 composite hollow spheres with enhanced activity and durability in visible photocatalysisâ€â€™ by C. Huang, H. Zhang, X. Zhang, Z. Wang and Y. Zhao, New J. Chem., 2019, 43, DOI: 10.1039/C8NJ05831H. New Journal of Chemistry, 2019, 43, 9292-9293.	1.4	0