António J C Varandas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7899641/publications.pdf

Version: 2024-02-01

409 papers 10,889 citations

51 h-index 69250 77 g-index

421 all docs

421 docs citations

times ranked

421

3150 citing authors

#	Article	IF	CITATIONS
1	A double manyâ€body expansion of the two lowestâ€energy potential surfaces and nonadiabatic coupling for H3. Journal of Chemical Physics, 1987, 86, 6258-6269.	3.0	373
2	Analytical potentials for triatomic molecules from spectroscopic data. Molecular Physics, 1976, 32, 1359-1372.	1.7	249
3	Recalibration of a single-valued double many-body expansion potential energy surface for ground-state hydroperoxy and dynamics calculations for the oxygen atom + hydroxyl .fwdarw. oxygen + hydrogen atom reaction. The Journal of Physical Chemistry, 1990, 94, 8073-8080.	2.9	244
4	Predicting Catalysis:Â Understanding Ammonia Synthesis from First-Principles Calculations. Journal of Physical Chemistry B, 2006, 110, 17719-17735.	2.6	192
5	Extrapolating to the one-electron basis-set limit in electronic structure calculations. Journal of Chemical Physics, 2007, 126, 244105.	3.0	176
6	Intermolecular and Intramolecular Potentials: Topographical Aspects, Calculation, and Functional Representation via A Double Many-Body Expansion Method. Advances in Chemical Physics, 2007, , 255-338.	0.3	160
7	Basis-set extrapolation of the correlation energy. Journal of Chemical Physics, 2000, 113, 8880-8887.	3.0	151
8	A realistic double many-body expansion (DMBE) potential energy surface for ground-state O3from a multiproperty fit toab initiocalculations, and to experimental spectroscopic, inelastic scattering, and kinetic isotope thermal rate data. Molecular Physics, 1988, 65, 843-860.	1.7	138
9	Quasiclassical trajectory calculations of the thermal rate coefficients for the reactions $H(D)+O2\hat{a}\uparrow'OH(D)+O$ and $O+OH(D)\hat{a}\uparrow'O2+H(D)$ as a function of temperature. Journal of Chemical Physics, 1992, 96, 5137-5150.	3.0	125
10	Potential model for diatomic molecules including the united-atom limit and its use in a multiproperty fit for argon. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 941.	1.7	122
11	Excitation function for H+O2 reaction: A study of zeroâ€point energy effects and rotational distributions in trajectory calculations. Journal of Chemical Physics, 1993, 99, 1076-1085.	3.0	120
12	A novel non-active model to account for the leak of zero-point energy in trajectory calculations. Application to H + O2 reaction near threshold. Chemical Physics Letters, 1994, 225, 18-27.	2.6	113
13	Energy switching approach to potential surfaces: An accurate singleâ€valued function for the water molecule. Journal of Chemical Physics, 1996, 105, 3524-3531.	3.0	111
14	A general approach to the potential energy functions of small polyatomic systems: Molecules and van der Waals molecules. Computational and Theoretical Chemistry, 1985, 120, 401-424.	1.5	100
15	Quantum mechanical valence study of a bond-breaking-bond-forming process in triatomic systems. International Journal of Quantum Chemistry, 1994, 52, 1153-1176.	2.0	100
16	A many-body expansion of polyatomic potential energy surfaces: application to H n systems. Faraday Discussions of the Chemical Society, 1977, 62, 92.	2.2	96
17	A useful triangular plot of triatomic potential energy surfaces. Chemical Physics Letters, 1987, 138, 455-461.	2.6	89
18	Use of scaled external correlation, a double manyâ€body expansion, and variational transition state theory to calibrate a potential energy surface for FH2. Journal of Chemical Physics, 1991, 94, 7136-7149.	3.0	89

#	Article	IF	CITATIONS
19	Analytical potentials for triatomic molecules. Molecular Physics, 1982, 45, 1053-1066.	1.7	87
20	A realistic hydroperoxo(~X2A") potential energy surface from the double many-body expansion method. The Journal of Physical Chemistry, 1988, 92, 3732-3742.	2.9	83
21	A semiempirical method for correcting configuration interaction potential energy surfaces. Journal of Chemical Physics, 1989, 90, 4379-4391.	3.0	83
22	Four-atom bimolecular reactions with relevance in environmental chemistry: Theoretical work. International Reviews in Physical Chemistry, 2000, 19, 199-245.	2.3	82
23	Accurate ab initio based multisheeted double many-body expansion potential energy surface for the three lowest electronic singlet states of H3+. Journal of Chemical Physics, 2007, 126, 074309.	3.0	81
24	Narrowing the error in electron correlation calculations by basis set re-hierarchization and use of the unified singlet and triplet electron-pair extrapolation scheme: Application to a test set of 106 systems. Journal of Chemical Physics, 2014, 141, 224113.	3.0	76
25	Accurate DMBE Potential Energy Surface For the N(2D) + H2($\hat{1}$ £ g +) Reaction Using an Improved Switching Function Formalism. Theoretical Chemistry Accounts, 2006, 116, 404-419.	1.4	73
26	On the relation of dispersion to induction energies, and to their damping functions. Molecular Physics, 1987, 60, 527-539.	1.7	70
27	Extrapolation to the Complete Basis Set Limit without Counterpoise. The Pair Potential of Helium Revisited ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8505-8516.	2.5	69
28	Chercher le croisement. Chemical Physics Letters, 1979, 61, 431-434.	2.6	68
29	A Quantum Wave Packet Dynamics Study of the N(2D) + H2Reactionâ€. Journal of Physical Chemistry A, 2006, 110, 1666-1671.	2.5	68
30	A simple semi-empirical approach to the intermolecular potential of van der Waals systems. Molecular Physics, 1982, 45, 857-875.	1.7	67
31	Method for quasiclassical trajectory calculations on potential energy surfaces defined from gradients and Hessians, and model to constrain the energy in vibrational modes. Journal of Chemical Physics, 1994, 100, 1908-1920.	3.0	66
32	Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry. Annual Review of Physical Chemistry, 2018, 69, 177-203.	10.8	65
33	Single-Valued DMBE Potential Energy Surface for HSO:Â A Distributedn-Body Polynomial Approach. Journal of Physical Chemistry A, 2001, 105, 5923-5932.	2.5	64
34	Towards a double many-body expansion method for multivalued potential energy surfaces. Molecular Physics, 1995, 85, 497-526.	1.7	63
35	Ab initio theoretical calculation and potential energy surface for ground-state HO3. Chemical Physics Letters, 2001, 334, 173-178.	2.6	63
36	Accurate <i>ab initio</i> potential energy curves for the classic Li–F ionic-covalent interaction by extrapolation to the complete basis set limit and modeling of the radial nonadiabatic coupling. Journal of Chemical Physics, 2009, 131, 124128.	3.0	62

#	Article	IF	Citations
37	A new formulation of three-body dynamical correlation energy for explicit potential functions. Chemical Physics Letters, 1992, 194, 333-340.	2.6	61
38	Trajectory binning scheme and non-active treatment of zero-point energy leakage in quasi-classical dynamics. Chemical Physics Letters, 2007, 439, 386-392.	2.6	60
39	Extrapolation to the complete-basis-set limit and the implications of avoided crossings: The X Σ1g+, B Δ and B′ Σ1g+ states of C2. Journal of Chemical Physics, 2008, 129, 234103.	1 g :0	60
40	Implications of the O + OH reaction in hydroxyl nightglow modeling. Atmospheric Chemistry and Physics, 2013, 13, 1-13.	4.9	60
41	Analytical potentials for triatomic molecules from spectroscopic data. Molecular Physics, 1977, 34, 947-962.	1.7	59
42	Reaction rates of H(H2), D(H2), and H(D2) van der Waals molecules and the threshold behavior of the bimolecular gasâ€phase rate coefficient. Journal of Chemical Physics, 1989, 91, 3492-3503.	3.0	59
43	Hartree–Fock approximate correlation energy (HFACE) potential for diatomic interactions. Molecules and van der Waals molecules. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 593-608.	1.1	58
44	A double many-body expansion of molecular potential energy functions. Molecular Physics, 1986, 57, 387-414.	1.7	57
45	A double many-body expansion of molecular potential energy functions. Molecular Physics, 1984, 53, 1303-1325.	1.7	56
46	Double many-body expansion potential energy surface for ground state HSO2. Physical Chemistry Chemical Physics, 2005, 7, 2305.	2.8	56
47	Double many-body expansion potential energy surface for ground-state HCN based on realistic long range forces and accurateab initiocalculations. Journal of Chemical Physics, 1997, 106, 9647-9658.	3.0	55
48	A general inter-relationship between transition-state bond extensions and the energy barrier to reaction. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 953.	1.1	54
49	On the chaperon mechanism for association rate constants: the formation of HO2 and O3. Chemical Physics Letters, 1996, 249, 264-271.	2.6	53
50	A detailed stateâ€toâ€state lowâ€energy dynamics study of the reaction O(3P)+OH(2Î)→O2(XÌf 3Σgâ^')+H quasiclassical trajectory–internalâ€energy quantumâ€mechanicalâ€threshold method. Journal of Chemical Physics, 1992, 97, 4050-4065.	I(2S) using 3.0	g a 52
51	Quasiclassical trajectory calculations of the thermal rate coefficient for the oxygen atom + hydroxyl .fwdarw. oxygen + hydrogen atom reaction on realistic double many-body expansion potential energy surfaces for ground-state hydroperoxy. The Journal of Physical Chemistry, 1988, 92, 4552-4555.	2.9	51
52	Accurate Double Many-Body Expansion Potential Energy Surface for N ₃ (⁴ A′′) from Correlation Scaled ab Initio Energies with Extrapolation to the Complete Basis Set Limit. Journal of Physical Chemistry A, 2009, 113, 14424-14430.	2.5	51
53	Dynamics of the 18O + 16O2(i=0) exchange reaction on a new potential energy surface for ground-state ozone. Chemical Physics Letters, 1982, 88, 1-6.	2.6	50
54	On phase factors and geometric phases in isotopes of H3: A line integral study. Journal of Chemical Physics, 2000, 112, 2746-2751.	3.0	50

#	Article	IF	Citations
55	Unimolecular and Bimolecular Calculations for HN2. Journal of Physical Chemistry A, 2005, 109, 2356-2363.	2.5	50
56	Accurate <i>ab initio</i> double many-body expansion potential energy surface for ground-state H2S by extrapolation to the complete basis set limit. Journal of Chemical Physics, 2009, 130, 134317.	3.0	50
57	Energy switching approach to potential surfaces. II. Two-valued function for the water molecule. Journal of Chemical Physics, 1997, 107, 867-878.	3.0	49
58	Dynamics of H(D)+O3 reactions on a double many-body expansion potential-energy surface for ground state HO3. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2651-2656.	1.7	48
59	Semiclassical variational transition state calculations for the reactions of H and D with thermal and vibrationally excited H2. International Journal of Chemical Kinetics, 1986, 18, 1065-1077.	1.6	47
60	Accurate global ab initio potentials at low-cost by correlation scaling and extrapolation to the one-electron basis set limit. Chemical Physics Letters, 2007, 443, 398-407.	2.6	47
61	Nuclear dynamics in the vicinity of the crossing seam: Theory and application to vibrational spectrum of H3. Journal of Chemical Physics, 2000, 112, 2121-2127.	3.0	46
62	A realistic multi-sheeted potential energy surface for NO2($2A\hat{a}\in^2$) from the double many-body expansion method and a novel multiple energy-switching scheme. Journal of Chemical Physics, 2003, 119, 2596-2613.	3.0	46
63	OH(v)+O3: Does chemical reaction dominate over non-reactive quenching?. Chemical Physics Letters, 2001, 340, 62-70.	2.6	45
64	Accurate <i>ab initio </i> potentials at low cost via correlation scaling and extrapolation: Application to CO(AÎ1). Journal of Chemical Physics, 2007, 127, 114316.	3.0	45
65	HN ₂ (² <i>A</i> ê°) Electronic Manifold. II. ⟨i>Ab ⟨i>Initio Based Double-Sheeted DMBE Potential Energy Surface via a Global Diabatization Angle. Journal of Physical Chemistry A, 2008, 112, 3768-3786.	2.5	45
66	<i>Ab Initio</i> Treatment of Bond-Breaking Reactions: Accurate Course of HO ₃ Dissociation and Revisit to Isomerization. Journal of Chemical Theory and Computation, 2012, 8, 428-441.	5.3	45
67	Perturbation calculations of rare-gas potentials near the van der Waals minimum. Molecular Physics, 1975, 30, 223-236.	1.7	44
68	Repulsive double many-body expansion potential energy surface for the reactions N(4S)+ H2⇌ NH(X3Σ–)+ H from accurate ab initio calculations. Physical Chemistry Chemical Physics, 2005, 7, 2867.	2.8	44
69	Nonadiabatic effects in D++H2 and H++D2. Chemical Physics Letters, 2009, 471, 222-228.	2.6	44
70	New Double Many-Body Expansion Potential Energy Surface for Ground-State HCN from a Multiproperty Fit to Accurate ab Initio Energies and Rovibrational Calculationsâ€. Journal of Physical Chemistry A, 2006, 110, 485-493.	2.5	43
71	Nonadiabatic effects in the H+D2 reaction. Journal of Chemical Physics, 2006, 125, 133108.	3.0	43
72	Geometric phase effects on transition-state resonances and bound vibrational states of H3 via a time-dependent wavepacket method. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 819-824.	1.7	42

#	Article	IF	CITATIONS
73	Bound Ro-Vibronic States of TripletH3+. Physical Review Letters, 2001, 86, 1183-1186.	7.8	42
74	On the O2(ν′) + O2(ν′) atmospheric reaction: a quasiclassical trajectory study. Chemical Physics, 1997, 2 167-182.	² 15,	41
75	Accurate rate constant and quantum effects for N(2D)+H2 reaction. Chemical Physics Letters, 2006, 421, 415-420.	2.6	41
76	Reactive and non-reactive vibrational quenching in O \pm OH collisions. Chemical Physics Letters, 2004, 396, 182-190.	2.6	40
77	Can extrapolation to the basis set limit be an alternative to the counterpoise correction? A study on the helium dimer. Theoretical Chemistry Accounts, 2008, 119, 511-521.	1.4	40
78	Generalized Uniform Singlet- and Triplet-Pair Extrapolation of the Correlation Energy to the One Electron Basis Set Limit. Journal of Physical Chemistry A, 2008, 112, 1841-1850.	2.5	40
79	Double many-body expansion of molecular potential energy functions and the role of long-range forces in the rates of chemical reactions. Computational and Theoretical Chemistry, 1988, 166, 59-74.	1.5	39
80	Are Vibrationally Excited Molecules a Clue for the "O3Deficit Problem―and "HOxDilemma―in the Middle Atmosphere?. Journal of Physical Chemistry A, 2004, 108, 758-769.	2.5	39
81	Quasi-classical trajectory and quantum mechanics study of the reaction H(2S)+NHâ†'N(4S)+H2. Chemical Physics Letters, 2010, 493, 225-228.	2.6	39
82	Test studies on the potential energy surface and rate constant for the OH+O3 atmospheric reaction. Chemical Physics Letters, 2000, 331, 474-482.	2.6	38
83	Accurate Single-Valued Double Many-Body Expansion Potential Energy Surface for Ground-State HN2. Journal of Physical Chemistry A, 2003, 107, 7923-7930.	2.5	38
84	Dynamics of X+CH4 (X=H,O,Cl) reactions: How reliable is transition state theory for fine-tuning potential energy surfaces?. Journal of Chemical Physics, 2006, 125, 064312.	3.0	38
85	Double many-body expansion potential energy surface for ground-state HO3. Molecular Physics, 1997, 91, 301-318.	1.7	37
86	Existence of strictly diabatic basis sets for the two-state problem. International Journal of Quantum Chemistry, 2002, 89, 255-259.	2.0	37
87	On the stability of the elusive HO3 radical. Physical Chemistry Chemical Physics, 2011, 13, 15619.	2.8	37
88	A LEPS potential for H3 from force field data. Journal of Chemical Physics, 1979, 70, 3786-3795.	3.0	36
89	Threeâ€dimensional quantum mechanical rate constants for the reaction O+O3→2O2, employing a sixâ€dimensional potential energy surface. Journal of Chemical Physics, 1995, 102, 3474-3476.	3.0	36
90	Dynamics of HO2+O3 reaction using a test DMBE potential energy surface: does it occur via oxygen or hydrogen atom abstraction?. Chemical Physics Letters, 2004, 385, 409-416.	2.6	36

#	Article	IF	Citations
91	Dynamics Study of the N(4S) + O2Reaction and Its Reverse. Journal of Physical Chemistry A, 2004, 108, 3556-3564.	2.5	36
92	Combined-hyperbolic-inverse-power-representation of potential energy surfaces: A preliminary assessment for H3 and HO2. Journal of Chemical Physics, 2013, 138, 054120.	3.0	36
93	Accurate combined-hyperbolic-inverse-power-representation of <i>ab initio</i> potential energy surface for the hydroperoxyl radical and dynamics study of \$f O+OH\$O+OH reaction. Journal of Chemical Physics, 2013, 138, 134117.	3.0	36
94	Calculation of the asymptotic interaction and modelling of the potential energy curves of OH and OH+. Chemical Physics, 1995, 194, 91-100.	1.9	35
95	Cross sections and rate constants for the $O(1D)$ + H2 reaction using a single-valued energy-switching potential energy surface. Chemical Physics Letters, 1997, 278, 325-332.	2.6	35
96	Theoretical study of the reaction OH+SO→H+SO2. Chemical Physics Letters, 2007, 433, 279-285.	2.6	35
97	Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path. Physical Chemistry Chemical Physics, 2011, 13, 9796.	2.8	35
98	The coupled 3D wave packet approach for triatomic reactive scattering in hyperspherical coordinates. Computer Physics Communications, 2013, 184, 270-283.	7.5	35
99	A realistic double many-body expansion potential energy surface for from a multiproperty fit to accurate ab initio energies and vibrational levels. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 629-647.	3.9	34
100	Benchmarking of Density Functionals for the Accurate Description of Thiol–Disulfide Exchange. Journal of Chemical Theory and Computation, 2014, 10, 4842-4856.	5.3	33
101	Analytical potentials for triatomic molecules from spectroscopic data. Molecular Physics, 1978, 35, 1325-1336.	1.7	32
102	Theoretical 3D study of transition state resonances for the H + H2 reaction using two coupled diabatic potential energy surfaces. Chemical Physics Letters, 1996, 259, 336-341.	2.6	32
103	Energy switching approach to potential surfaces. III. Three-valued function for the water molecule. Journal of Chemical Physics, 1998, 108, 7623-7630.	3.0	32
104	On the "Ozone Deficit Problem― What Are Ox and HOx Catalytic Cycles for Ozone Depletion Hiding?. ChemPhysChem, 2002, 3, 433.	2.1	32
105	Application of renormalized coupled-cluster methods to potential function of water. Theoretical Chemistry Accounts, 2008, 120, 59-78.	1.4	32
106	Extrapolating potential energy surfaces by scaling electron correlation at a single geometry. Chemical Physics Letters, 2006, 430, 448-453.	2.6	31
107	Choosing points in potential energy surfaces for fitting polynomial functions: application of permutational symmetry. Chemical Physics Letters, 1981, 84, 440-445.	2.6	30
108	Thermophysical Properties of Alkali Metal Vapours, Part I â€" Theoretical Calculation of the Properties of Monatomic Systems. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 53-59.	0.9	30

#	Article	IF	Citations
109	Atom-molecule dispersion-energy coefficients and their dependence on the intramolecular coordinate: A-H2systems. Molecular Physics, 1990, 70, 623-644.	1.7	30
110	Accurate MRCI study of ground-state N2H2 potential energy surface. Chemical Physics Letters, 2006, 424, 46-53.	2.6	30
111	Accurate Double Many-Body Expansion Potential Energy Surface for Ground-State HS ₂ Based on ab Initio Data Extrapolated to the Complete Basis Set Limit. Journal of Physical Chemistry A, 2011, 115, 5274-5283.	2.5	30
112	Semi-empirical valence bond potential energy surfaces for homonuelear alkali trimers. Molecular Physics, 1982, 47, 1241-1251.	1.7	29
113	Accurate Potential Energy Surface for the 1 ² A′ State of NH ₂ : Scaling of External Correlation Versus Extrapolation to the Complete Basis Set Limit. Journal of Physical Chemistry A, 2010, 114, 9644-9654.	2.5	29
114	Trajectory Surface Hopping Study of the Li + Li2(X1 \hat{l} £g+) Dissociation Reaction. Journal of Physical Chemistry A, 1998, 102, 6057-6062.	2.5	28
115	On the high pressure rate constants for the H/Mu + O2 addition reactions. Physical Chemistry Chemical Physics, 2001, 3, 505-507.	2.8	28
116	MODELING AND INTERPOLATION OF GLOBAL MULTI-SHEETED POTENTIAL ENERGY SURFACES. Advanced Series in Physical Chemistry, 2004, , 205-270.	1.5	28
117	Quasiclassical Trajectory Study of Atom-Exchange and Vibrational Relaxation Processes in Collisions of Atomic and Molecular Nitrogen. Journal of Physical Chemistry A, 2010, 114, 6063-6070.	2.5	28
118	Extrapolation of Hartree–Fock and multiconfiguration self-consistent-field energies to the complete basis set limit. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	28
119	Single-Valued Double Many-Body Expansion Potential Energy Surface of Ground-State SO2. Journal of Physical Chemistry A, 2002, 106, 556-562.	2.5	27
120	Dynamics Study of the O + HO2Reaction Using Two DMBE Potential Energy Surfaces: The Role of Vibrational Excitationâ€. Journal of Physical Chemistry A, 2004, 108, 8721-8730.	2.5	27
121	Accurate double many-body expansion potential energy surface for triplet H3+. II. The upper adiabatic sheet (2 3A′). Journal of Chemical Physics, 2004, 120, 253-259.	3.0	27
122	Accurate <i>ab initio</i> based DMBE potential energy surface for the ground electronic state of N2H2. Journal of Chemical Physics, 2009, 131, 044309.	3.0	27
123	N(4 <i>>S</i> /2 <i>D</i>)+N2: Accurate <i>ab initio</i> based DMBE potential energy surfaces and surface-hopping dynamics. Journal of Chemical Physics, 2012, 137, 22A515.	3.0	27
124	Low-temperature D+ + H2 reaction: A time-dependent coupled wave-packet study in hyperspherical coordinates. Journal of Chemical Physics, 2015, 142, 024304.	3.0	27
125	On the performance of various hierarchized bases in extrapolating the correlation energy to the complete basis set limit. Chemical Physics Letters, 2015, 641, 90-96.	2.6	27
126	Quasiclassical Trajectory Study of the Environmental Reaction O + HO2 â†' OH + O2. Journal of Physical Chemistry A, 1998, 102, 6935-6941.	2.5	26

#	Article	IF	CITATIONS
127	Anatomy of the S(1D) + H2 reaction: the dynamics on two new potential energy surfaces from quantum dynamics calculations. Physical Chemistry Chemical Physics, 2011, 13, 13645.	2.8	26
128	Ab Initio Based Double-Sheeted DMBE Potential Energy Surface for N ₃ (² <i>A</i> ″) and Exploratory Dynamics Calculations. Journal of Physical Chemistry A, 2011, 115, 12390-12398.	2.5	26
129	On the role of dynamical barriers in barrierless reactions at low energies: $S(1D) + H2$. Journal of Chemical Physics, 2011, 135, 134313.	3.0	26
130	Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: Application to the Adiabatic Singlet-State(1 ¹ A′) D ⁺ + H ₂ Reaction. Journal of Physical Chemistry A, 2014, 118, 4837-4850.	2.5	26
131	Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: The D ⁺ +H ₂ Reaction on the Triple-Sheeted DMBE Potential Energy Surface. Journal of Physical Chemistry A, 2015, 119, 12392-12403.	2.5	26
132	Role of (H ₂ O) _{<i>n</i>} (<i>n</i> < = $2\hat{a}$ <%3) Clusters on the HO ₂ + O ₃ Reaction: A Theoretical Study. Journal of Physical Chemistry B, 2016, 120, 1560-1568.	2.6	26
133	A novel accurate representation of a double-valued potential energy surface by the DMBE method. Application to triplet H3+(). Chemical Physics, 2005, 308, 285-295.	1.9	25
134	Potential Energy Surface for Ground-State H2S via Scaling of the External Correlation, Comparison with Extrapolation to Complete Basis Set Limit, and Use in Reaction Dynamics. Journal of Physical Chemistry A, 2009, 113, 9213-9219.	2.5	25
135	Quasiclassical Trajectory Study of the C($<$ sup> $1<$ sup> $<$ i>D <i>) + H_{$2<$sub> Reaction and Isotopomeric Variants: Kinetic Isotope Effect and CD/CH Branching Ratio. Journal of Physical Chemistry A, 2011, 115, 7882-7890.}</i>	2.5	25
136	CBS extrapolation in electronic structure pushed to the end: a revival of minimal and sub-minimal basis sets. Physical Chemistry Chemical Physics, 2018, 20, 22084-22098.	2.8	25
137	Multivalued Potential Energy Surfaces for Dynamics Studies. Lecture Notes in Quantum Chemistry II, 2000, , 33-56.	0.3	25
138	J=0 reactivity and cross-section in the H + O2 reaction: is there a pronounced maximum as a function of energy?. Chemical Physics Letters, 1995, 235, 111-118.	2.6	24
139	Accurate double many-body expansion potential energy surface for triplet H[sub 3][sup +]. I. The lowest adiabatic sheet (a[sup 3] \hat{I} [sub u][sup +]). Journal of Chemical Physics, 2003, 118, 2637.	3.0	24
140	Recalibrated Double Many-Body Expansion Potential Energy Surface and Dynamics Calculations for HN2. Journal of Physical Chemistry A, 2007, 111, 1172-1178.	2.5	24
141	xmins:mmi="http://www.w3.org/1998/Math/Math/Mithlm" altimg="si88.gif" display="inline" overflow="scroll"> <mml:mrow><mml:msup><mml:mrow overflow="scroll"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msubsup></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow>	2.6 <mml:mo:< td=""><td>24 >+</td></mml:mo:<>	24 >+
142	Accurate MRCI and CC Study of the Most Relevant Stationary Points and Other Topographical Attributes for the Ground-State C ₂ H ₂ Potential Energy Surface. Journal of Physical Chemistry A, 2010, 114, 13277-13287.	2.5	24
143	The Jahn-Teller effect in the triply degenerate electronic state of methane radical cation. Journal of Chemical Physics, 2011, 135, 174304.	3.0	24
144	Toward a unified single-parameter extrapolation scheme for the correlation energy: Systems formed by atoms of hydrogen through neon. Chemical Physics Letters, 2015, 631-632, 70-77.	2.6	24

#	Article	IF	CITATIONS
145	Hybrid potential function for bound diatomic molecules. Journal of the Chemical Society, Faraday Transactions 2, 1980, 76, 129.	1.1	23
146	Extrapolation method for cross-section from quantum mechanicalJ= 0 reactivity: H + O2. Molecular Physics, 1995, 85, 1159-1164.	1.7	23
147	A VTST Study of the H + O3and O + HO2Reactions Using a Six-dimensional DMBE Potential Energy Surface for Ground State HO3. Journal of Physical Chemistry A, 2002, 106, 4077-4083.	2.5	23
148	Accurate < i>ab initio < /i> -based molecular potentials: from extrapolation methods to global modelling. Physica Scripta, 2007, 76, C28-C35.	2.5	23
149	Dynamics and kinetics of the H+SO2 reaction: A theoretical study. Chemical Physics Letters, 2007, 439, 301-307.	2.6	23
150	Double many-body expansion of the two lowest potential-energy surfaces for Li3 and dynamics of the Li + Li2(v) reaction. Initial orientation and vibrational excitation effects. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1511.	1.7	22
151	Potential Energy Surfaces for the Low-Lying 2A'' States of HO2 via a Multivalued Double Many-Body Expansion: Modeling Basic Attributes. The Journal of Physical Chemistry, 1995, 99, 15846-15857.	2.9	22
152	On the behavior of single-surface nuclear wavefunctions in the vicinity of the conical intersection for an X3 system. Chemical Physics Letters, 2000, 316, 248-256.	2.6	22
153	Dynamics of the OH($v = 1,2,4$) + O3 atmospheric reaction. Physical Chemistry Chemical Physics, 2001, 3, 1439-1445.	2.8	22
154	On the Rovibrational Partition Function of Molecular Hydrogen at High Temperatures. Journal of Physical Chemistry A, 2001, 105, 9518-9521.	2.5	22
155	Geometrical phase effect in Jahn–Teller systems: Twofold electronic degeneracies and beyond. Chemical Physics Letters, 2010, 487, 139-146.	2.6	22
156	Ab-Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the Electronic Ground State of the Ammonia Molecule. Journal of Physical Chemistry A, 2010, 114, 6669-6680.	2.5	22
157	Electronic Quenching of N(² D) by N ₂ : Theoretical Predictions, Comparison with Experimental Rate Constants, and Impact on Atmospheric Modeling. Journal of Physical Chemistry Letters, 2013, 4, 2292-2297.	4.6	22
158	Double Many-Body Expansion Potential Energy Surface for O4(3A), Dynamics of the O(3P) + O3(1A1) Reaction, and Second Virial Coefficients of Molecular Oxygen., 1991,, 55-78.		22
159	Internuclear dependence of static dipole polarizability in diatomic molecules. Chemical Physics Letters, 1995, 245, 66-74.	2.6	21
160	Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface. Journal of Physical Chemistry A, 1997, 101, 8817-8821.	2.5	21
161	Accurate Double Many-Body Expansion Potential Energy Surface for the Lowest Singlet State of Methylene. Journal of Physical Chemistry A, 2009, 113, 4175-4183.	2.5	21
162	How Well Can Kohnâ^'Sham DFT Describe the HO $<$ sub $>$ 2 $<$ /sub $>$ + O $<$ sub $>$ 3 $<$ /sub $>$ Reaction?. Journal of Chemical Theory and Computation, 2010, 6, 2751-2761.	5.3	21

#	Article	IF	CITATIONS
163	Oddâ€hydrogen: An account on electronic structure, kinetics, and role of water in mediating reactions with atmospheric ozone. Just a catalyst or far beyond?. International Journal of Quantum Chemistry, 2014, 114, 1327-1349.	2.0	21
164	$\langle i \rangle C \langle i \rangle \langle sub \rangle \langle i \rangle n \langle i \rangle \langle sub \rangle$ ($\langle i \rangle n \langle i \rangle = 2 \hat{a}^3 \hat{a}$): current status. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170145.	3.4	21
165	The double many-body expansion of potential energy surfaces from interacting 2S atoms. International Journal of Quantum Chemistry, 1987, 32, 563-574.	2.0	20
166	A three-dimensional quantum mechanical study of the reaction O + O3 â†' 2O2 employing a six-dimensional potential energy surface. Chemical Physics Letters, 1994, 231, 253-256.	2.6	20
167	Dynamics Study of the H + ArO2Multichannel Reaction. The Journal of Physical Chemistry, 1996, 100, 17513-17522.	2.9	20
168	Dynamics Study of the OH + O2 Branching Atmospheric Reaction. 2. Influence of Reactants Internal Energy in HO2 and O3 Formation. Journal of Physical Chemistry A, 2001, 105, 4395-4402.	2.5	20
169	Potential Energy Curves for X1Σ+ and A1Î States of CO: The A1Î(v′=1–23)â†X1Σ+(v″=0, 1) Transitions. Jo Molecular Spectroscopy, 2001, 209, 24-29.	urnal of	20
170	Direct fit of extended Hartree–Fock approximate correlation energy model to spectroscopic data. Chemical Physics Letters, 2006, 424, 425-431.	2.6	20
171	HO ₂ + O ₃ Reaction: Ab Initio Study and Implications in Atmospheric Chemistry. Journal of Chemical Theory and Computation, 2010, 6, 412-420.	5. 3	20
172	Coupledâ€cluster reaction barriers of : An application of the coupledâ€cluster//Kohn–Sham density functional theory model chemistry. Journal of Computational Chemistry, 2014, 35, 507-517.	3.3	20
173	On Extracting Subfemtosecond Data from Femtosecond Quantum Dynamics Calculations: The Methane Cation. Journal of Chemical Theory and Computation, 2014, 10, 3606-3616.	5.3	20
174	Accurate diatomic curves for Ne2, Ar2, Kr2and Xe2form the extended Hartree–Fock approximate correlation energy model. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 1851-1875.	1.1	19
175	Adjusted double many-body expansion potential energy surface for H02 based on rigorous vibrational calculations. Chemical Physics Letters, 1995, 233, 405-410.	2.6	19
176	Dynamics Study of the Reaction Ar + HCN â†' Ar + H + CN. Journal of Physical Chemistry A, 1998, 102, 6266-6273.	2.5	19
177	Unimolecular reaction dynamics of HSO. Analysis of the influence of different barrier samplings on the product energy distributions. Physical Chemistry Chemical Physics, 2002, 4, 279-287.	2.8	19
178	Cone states of tri-hydrogen isotopomers and criterion for the geometric phase effect. Chemical Physics Letters, 2003, 367, 625-632.	2.6	19
179	Forbidden transitions in benzene. Computational and Theoretical Chemistry, 2003, 621, 99-105.	1.5	19
180	Steady-State Distributions of O2 and OH in the High Atmosphere and Implications in the Ozone Chemistry. Journal of Physical Chemistry A, 2003, 107, 3769-3777.	2.5	19

#	Article	IF	Citations
181	What are the Implications of Nonequilibrium in the O+OH and O+HO2 Reactions?. ChemPhysChem, 2005, 6, 453-465.	2.1	19
182	Accurate ab-Initio-Based Single-Sheeted DMBE Potential-Energy Surface for Ground-State N ₂ O. Journal of Physical Chemistry A, 2012, 116, 4646-4656.	2.5	19
183	Can water be a catalyst on the HO2+H2O+O3 reactive cluster?. Chemical Physics, 2012, 399, 17-22.	1.9	19
184	Accurate <i>ab initio</i> based double many-body expansion potential energy surface for the adiabatic ground-state of the C3 radical including combined Jahn-Teller plus pseudo-Jahn-Teller interactions. Journal of Chemical Physics, 2015, 143, 074302.	3.0	19
185	The Jahn-Teller plus pseudo-Jahn-Teller vibronic problem in the C3 radical and its topological implications. Journal of Chemical Physics, 2016, 144, 064309.	3.0	19
186	On the variation of the electric quadrupole moment with internuclear distance and the atom–diatom long-range electrostatic interaction energy. Physical Chemistry Chemical Physics, 2000, 2, 435-439.	2.8	18
187	Quasiclassical Trajectory Study of the Atmospheric Reaction N($\langle \sup 2 \langle \sup \rangle \langle i \rangle D \langle i \rangle \rangle + NO(\langle i \rangle X \langle i \rangle)$ Tj ETQq1	1 0.78431 2.5	4 rgBT /Ove 18
188	Transition state bond extensions and activation energy in hydrogen atom transfer reactions. Journal of the Chemical Society Chemical Communications, 1986, , 163.	2.0	17
189	A three-dimensional quantum mechanical study of the O+HO2 atmospheric reaction: infinite-order sudden approximation and novel adiabatic approaches vs. quasiclassical trajectories. Chemical Physics Letters, 1998, 295, 113-121.	2.6	17
190	Vibrational spectrum of Li3 first-excited electronic doublet state: Geometric-phase effects and statistical analysis. International Journal of Quantum Chemistry, 1999, 75, 89-109.	2.0	17
191	Dynamics Study of the OH + O2Branching Atmospheric Reaction. 4. Influence of Vibrational Relaxation in Collisions Involving Highly Excited Species. Journal of Physical Chemistry A, 2002, 106, 5314-5322.	2.5	17
192	Dynamics of OH + O2vibrational relaxation processes. Physical Chemistry Chemical Physics, 2002, 4, 4959-4969.	2.8	17
193	On triplet tetraoxygen: ab initio study along minimum energy path and global modelling. Chemical Physics Letters, 2002, 356, 585-594.	2.6	17
194	Ab Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the First 2A″ Electronic State of NO2. Journal of Physical Chemistry A, 2012, 116, 3023-3034.	2.5	17
195	Structural evolution of the methane cation in subfemtosecond photodynamics. Journal of Chemical Physics, 2015, 143, 014304.	3.0	17
196	3D time-dependent wave-packet approach in hyperspherical coordinates for the H + O ₂ reaction on the CHIPR and DMBE IV potential energy surfaces. Physical Chemistry Chemical Physics, 2018, 20, 478-488.	2.8	17
197	On the isotropic and leading anisotropic terms of the H-H2 potential energy surface. Chemical Physics Letters, 1981, 77, 151-157.	2.6	16
198	Explicit three-body non-additive triple-dipole dispersion energy term including charge-overlap effects. Molecular Physics, 1983, 49, 817-828.	1.7	16

#	Article	IF	CITATIONS
199	Dynamics Study of the HO(vâ€~=0) + O2(vâ€~Ââ€~) Branching Atmospheric Reaction. 1. Formation of Hydroperoxyl Radical. Journal of Physical Chemistry A, 1999, 103, 4815-4822.	2.5	16
200	Calculation of the rate constant for state-selected recombination of H+O2(ν) as a function of temperature and pressure. Journal of Chemical Physics, 2004, 120, 10483-10500.	3.0	16
201	HN2(2Aâ€~) Electronic Manifold. I. A Global ab Initio Study of First Two Statesâ€. Journal of Physical Chemistry A, 2007, 111, 10191-10195.	2.5	16
202	Variational transition-state theory study of the atmospheric reaction OH + O3â†' HO2+ O2. International Journal of Chemical Kinetics, 2007, 39, 148-153.	1.6	16
203	Accurate quantum wave packet study of the N(2D)+D2 reaction. Chemical Physics Letters, 2007, 444, 351-354.	2.6	16
204	Geometric phase effects in resonance-mediated scattering: H+H2+ on its lowest triplet electronic state. Journal of Chemical Physics, 2008, 128, 211101.	3.0	16
205	Spin-component-scaling second-order Møller–Plesset theory and its variants for economical correlation energies: Unified theoretical interpretation and use for quartet N3. Journal of Chemical Physics, 2010, 133, 064104.	3.0	16
206	Accurate Determination of the Reaction Course in HY $<$ sub $>2sub> \hat{a}‡\times Y + YH (Y = O, S): Detailed Analysis of the Covalent- to Hydrogen-Bonding Transition. Journal of Physical Chemistry A, 2013, 117, 7393-7407.$	2.5	16
207	Electronic Quenching in N(² D) + N ₂ Collisions: A State-Specific Analysis via Surface Hopping Dynamics. Journal of Chemical Theory and Computation, 2014, 10, 1872-1877.	5.3	16
208	A general code for fitting global potential energy surfaces via CHIPR method: Triatomic molecules. Computer Physics Communications, 2020, 247, 106913.	7.5	16
209	Renormalized coupled-cluster methods: Theoretical foundations and application to the potential function of water. Progress in Theoretical Chemistry and Physics, 2007, , 63-121.	0.2	16
210	The calculation of dynamic polarizabilities and of the dipole-dipole and dipole-quadrupole contributions to the dispersion energy. Molecular Physics, 1973, 25, 1185-1192.	1.7	15
211	Semiempirical valence bond potential energy surfaces for the alkali trimers. Molecular Physics, 1986, 58, 285-297.	1.7	15
212	Classical Trajectory Study of Mode Specificity and Rotational Effects in Unimolecular Dissociation of HO2. Journal of Physical Chemistry A, 1997, 101, 5168-5173.	2.5	15
213	Vibrational spectrum of ground state Li ₃ and statistical analysis of the energy levels. Molecular Physics, 1999, 96, 1193-1206.	1.7	15
214	Approximate Quantum Mechanical Cross Sections and Rate Constants for the H + O3 Atmospheric Reaction Using Novel Elastic Optimum Angle Adiabatic Approaches. Journal of Physical Chemistry A, 1999, 103, 1967-1971.	2.5	15
215	Reply to the †Comment on †©On the high pressure rate constants for the H/Mu + O2 addition reactions†W'' by L. B. Harding, J. Troe and V. G. Ushakov, Phys. Chem. Chem. Phys., 2001, 3, 2630. Physical Chemistry Chemical Physics, 2001, 3, 2632-2633.	2.8	15
216	Extrapolating to the One-Electron Basis Set Limit in Polarizability Calculations. Journal of Physical Chemistry A, 2008, 112, 10413-10419.	2.5	15

#	Article	IF	CITATIONS
217	Møller–Plesset perturbation energies and distances for HeC ₂₀ extrapolated to the complete basis set limit. Journal of Computational Chemistry, 2009, 30, 379-388.	3.3	15
218	The reaction: Current status and prospective work. Computational and Theoretical Chemistry, 2011, 965, 291-297.	2.5	15
219	Roadmap to spline-fitting potentials in high dimensions. Journal of Mathematical Chemistry, 2013, 51, 1729-1746.	1.5	15
220	Modeling Cusps in Adiabatic Potential Energy Surfaces. Journal of Physical Chemistry A, 2015, 119, 1415-1421.	2.5	15
221	CBS extrapolation of Hartree–Fock energy: Pople and Dunning basis sets hand-to-hand on the endeavour. Physical Chemistry Chemical Physics, 2019, 21, 8022-8034.	2.8	15
222	A general code for fitting global potential energy surfaces via CHIPR method: Direct-Fit Diatomic and tetratomic molecules. Computer Physics Communications, 2021, 258, 107556.	7.5	15
223	Evaluation of vibrational partition functions for polyatomic systems: quantum versus classical methods for H2O and Ar··ĈN. Physical Chemistry Chemical Physics, 2000, 2, 4121-4129.	2.8	14
224	Dynamics Study of the O2(v) + HO2Atmospheric Reaction. Journal of Physical Chemistry A, 2001, 105, $10347-10355$.	2.5	14
225	Calculation of the Rovibrational Partition Function Using Classical Methods with Quantum Corrections. Journal of Physical Chemistry A, 2001, 105, 5272-5279.	2.5	14
226	Symmetry Analysis of the Vibronic States in the Upper Conical Potential (23Aâ€~) of Triplet. Journal of Physical Chemistry A, 2005, 109, 3307-3310.	2.5	14
227	A comparison of single-reference coupled-cluster and multi-reference configuration interaction methods for representative cuts of the potential energy surface. Computational and Theoretical Chemistry, 2008, 859, 22-29.	1.5	14
228	Refining to near spectroscopic accuracy the double many-body expansion potential energy surface for ground-state NH2. Chemical Physics Letters, 2011, 516, 17-22.	2.6	14
229	Heliumâ€fullerene pair interactions: An ab initio study by perturbation theory and coupled cluster methods. International Journal of Quantum Chemistry, 2011, 111, 416-429.	2.0	14
230	Quantum calculations for the $S(1D)+H2$ reaction employing the ground adiabatic electronic state. Physica Scripta, 2011, 84, 028102.	2.5	14
231	Application of the Unified Singlet and Triplet Electron-Pair Extrapolation Scheme with Basis Set Rehierarchization to Tensorial Properties. Journal of Physical Chemistry A, 2015, 119, 1208-1217.	2.5	14
232	Assessing How Correlated Molecular Orbital Calculations Can Perform versus Kohn–Sham DFT: Barrier Heights/Isomerizations. Chemistry - A European Journal, 2017, 23, 9122-9129.	3.3	14
233	The potential energy surface for the lowest quartet state of H3. Molecular Physics, 1976, 31, 1129-1135.	1.7	13
234	Potential for the ground state of ammonia. Journal of the Chemical Society, Faraday Transactions 2, 1977, 73, 939.	1.1	13

#	Article	IF	Citations
235	The many-body expansion of multi-valued surfaces. Molecular Physics, 1986, 57, 415-420.	1.7	13
236	Virial theorem decomposition as a tool for comparing and improving potential-energy surfaces: ground-state Li3. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1381.	1.7	13
237	Dynamics Study of the Reaction S + O2 → SO + O and Its Reverse on a Single-Valued Double Many-Body Expansion Potential Energy Surface for Ground-State SO2. Journal of Physical Chemistry A, 2003, 107, 5369-5374.	2.5	13
238	Generalized Bornâ€"Oppenheimer treatment of Jahnâ€"Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potential. Physical Chemistry Chemical Physics, 2011, 13, 8131.	2.8	13
239	Significant nonadiabatic effects in the C + CH reaction dynamics. Journal of Chemical Physics, 2011, 135, 024306.	3.0	13
240	Accurate <i>ab initio</i> àâ€based double manyâ€body expansion adiabatic potential energy surface for the 2 ² A [′] state of NH ₂ by extrapolation to the complete basis set limit. International Journal of Quantum Chemistry, 2012, 112, 2932-2939.	2.0	13
241	Quantum dynamics study on the CHIPR potential energy surface for the hydroperoxyl radical: The reactions O + OH⇷O2 + H. Journal of Chemical Physics, 2015, 142, 014309.	3.0	13
242	Accurate Explicit-Correlation-MRCI-Based DMBE Potential-Energy Surface for Ground-State CNO. Journal of Physical Chemistry A, 2018, 122, 4198-4207.	2.5	13
243	Fully coupled ($\langle i \rangle J \langle j \rangle \& gt; 0$) time-dependent wave-packet calculations using hyperspherical coordinates for the H + O $\langle sub \rangle 2 \langle sub \rangle = 0$ reaction on the CHIPR potential energy surface. Physical Chemistry Chemical Physics, 2019, 21, 20166-20176.	2.8	13
244	Accurate CHIPR Potential Energy Surface for the Lowest Triplet State of C _{3} . Journal of Physical Chemistry A, 2019, 123, 8154-8169.	2.5	13
245	Energy switching potential energy surfaces and spectra of the van der Waals modes for the ArHCN molecule. Chemical Physics Letters, 1998, 297, 458-466.	2.6	12
246	The OH(v′)+O2(v″) reaction: a new source of stratospheric ozone?. Chemical Physics Letters, 2001, 339, 1-8.	2.6	12
247	A Theoretical Study of Rate Coefficients for the O + NO Vibrational Relaxation. Journal of Physical Chemistry A, 2008, 112, 960-965.	2.5	12
248	Toward the modeling of the NO ₂ (² <i>A</i> [″]) manifold. International Journal of Quantum Chemistry, 2011, 111, 3776-3785.	2.0	12
249	Nonadiabatic quantum dynamics calculations for the N + NH \hat{a} †' N2 + H reaction. Physical Chemistry Chemical Physics, 2010, 12, 9619.	2.8	12
250	Quadratic coupling treatment of the Jahn-Teller effect in the triply-degenerate electronic state of \$f CH_4^+\$CH4+: Can one account for floppiness?. Journal of Chemical Physics, 2012, 137, 214320.	3.0	12
251	Modeling cusps in adiabatic potential energy surfaces using a generalized Jahn-Teller coordinate. Chemical Physics Letters, 2016, 660, 55-59.	2.6	12
252	Carbon Dioxide Capture and Release by Anions with Solventâ€Dependent Behaviour: A Theoretical Study. Chemistry - A European Journal, 2016, 22, 14056-14063.	3.3	12

#	Article	IF	Citations
253	Canonical and explicitly-correlated coupled cluster correlation energies of sub-kJ mol ^{â^1} accuracy <i>via</i> cost-effective hybrid-post-CBS extrapolation. Physical Chemistry Chemical Physics, 2021, 23, 9571-9584.	2.8	12
254	Canonical versus explicitly correlated coupled cluster: Postâ€completeâ€basisâ€set extrapolation and the quest of the completeâ€basisâ€set limit. International Journal of Quantum Chemistry, 2021, 121, e26598.	2.0	12
255	Zeroth-order exchange energy as a criterion for optimized atomic basis sets in interatomic force calculations. Application to He2. Chemical Physics Letters, 1980, 69, 222-224.	2.6	11
256	Exponentiating trajectories on a realistic potential energy surface for sodium trimer. The Journal of Physical Chemistry, 1992, 96, 5704-5709.	2.9	11
257	Virial theorem constraints on n-body terms of potential energy surfaces. Chemical Physics Letters, 1993, 205, 253-259.	2.6	11
258	Monte Carlo Simulation Approach to Internal Partition Functions for van der Waals Molecules. Journal of Physical Chemistry A, 1999, 103, 8303-8308.	2.5	11
259	DYNAMICS OF O + O3 REACTION ON A NEW POTENTIAL ENERGY SURFACE FOR GROUND-TRIPLET TETRAOXYGEN: SPECTATOR BOND MECHANISM REVISITED. Journal of Theoretical and Computational Chemistry, 2002, 01, 31-43.	1.8	11
260	An ab initio study of the interaction between He and C36 with extrapolation to the one electron basis set limit. Chemical Physics Letters, 2008, 463, 225-229.	2.6	11
261	H 4 + : What do we know about it?. Journal of Chemical Physics, 2008, 129, 034303.	3.0	11
262	Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form. Journal of Chemical Physics, 2008, 129, 044302.	3.0	11
263	DIABATIC ELECTRONIC MANIFOLD OF HN ₂ (² A′) AND N + NH REACTION DYNAMICS ON ITS LOWEST ADIABAT. Journal of Theoretical and Computational Chemistry, 2009, 08, 849-859.	1.8	11
264	Accurate double many-body expansion potential energy surface for the 21A′ state of N2O. Journal of Chemical Physics, 2014, 141, 084307.	3.0	11
265	The HO2 + (H2O)n + O3 reaction: an overview and recent developments. European Physical Journal D, 2016, 70, 1.	1.3	11
266	Coupled 3D time-dependent quantum wave-packet study of the O + OH reaction in hyperspherical coordinates on the CHIPR potential energy surface. Chemical Physics Letters, 2017, 675, 85-91.	2.6	11
267	Even numbered carbon clusters: cost-effective wavefunction-based method for calculation and automated location of most structural isomers. European Physical Journal D, 2018, 72, 1.	1.3	11
268	A global CHIPR potential energy surface for ground-state C ₃ H and exploratory dynamics studies of reaction C ₂ + CH ↠C ₃ + H. Physical Chemistry Chemical Physics, 2019, 21, 24406-24418.	2.8	11
269	Extrapolation in quantum chemistry: Insights on energetics and reaction dynamics. Journal of Theoretical and Computational Chemistry, 2020, 19, 2030001.	1.8	11
270	Quasiclassical trajectory calculations for H + H2 ($\hat{l}^{1/2}$ = 0, 1) on a potential energy surface from force field data. Chemical Physics, 1982, 69, 295-304.	1.9	10

#	Article	IF	Citations
271	Dynamics of the Li + Li2? Li2+ Li isoergic exchange reaction. A comparative study on two potential-energy surfaces. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 1.	1.1	10
272	Semiclassical theory of multidimensional tunneling and the hopping method. Journal of Chemical Physics, 1999, 111, 8302-8312.	3.0	10
273	Dynamics Study of the OH + O2 Branching Atmospheric Reaction. 3. Dissociation in Collisions of Vibrationally Excited Reactants. Journal of Physical Chemistry A, 2001, 105, 7435-7440.	2.5	10
274	A Direct Evaluation of the Partition Function and Thermodynamic Data for Water at High Temperatures. Journal of Physical Chemistry A, 2002, 106, 6193-6200.	2.5	10
275	Ro-vibrational states of triplet H3+ (a3Σu+): The lowest 19 bands. Journal of Molecular Spectroscopy, 2003, 221, 163-173.	1.2	10
276	in the electronic triplet state: current status. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2889-2901.	3.4	10
277	A detailed test study of barrier heights for the HO2 + H2O + O3 reaction with various forms of multireference perturbation theory. Journal of Chemical Physics, 2012, 136, 114312.	3.0	10
278	An accurate ab initio potential energy curve and the vibrational bound states of state of. Chemical Physics, 2012, 398, 160-167.	1.9	10
279	The O + NO($\langle i \rangle v \langle i \rangle$) Vibrational Relaxation Processes Revisited. Journal of Physical Chemistry A, 2018, 122, 5299-5310.	2.5	10
280	Post-complete-basis-set extrapolation of conventional and explicitly correlated coupled-cluster energies: can the convergence to the CBS limit be diagnosed? Physical Chemistry Chemical Physics, 2021, 23, 8717-8730.	2.8	10
281	SiS Formation in the Interstellar Medium through Si+SH Gas-phase Reactions. Astrophysical Journal, 2021, 920, 37.	4.5	10
282	Dynamics calculations and isotopic effect in O + OH(D)? O2+ H(D) at low energies. Journal of the Chemical Society, Faraday Transactions, 1994 , 90 , 2189 .	1.7	9
283	Ab InitioMRCI Calculation and Modeling of theA1ÎPotential Energy Curve of CO. Journal of Molecular Spectroscopy, 1998, 192, 86-90.	1.2	9
284	Quantum Dynamical Rate Constant for the H + O3Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface Revisited. Journal of Physical Chemistry A, 1998, 102, 8909-8912.	2.5	9
285	MRCI Calculation, Scaling of the External Correlation, and Modeling of Potential Energy Curves for HCl and OCl. Journal of Physical Chemistry A, 2000, 104, 6241-6246.	2.5	9
286	Hyperspherical nuclear motion of H3+ and D3+ in the electronic triplet state, al£u+3. Journal of Chemical Physics, 2008, 128, 054301.	3.0	9
287	Accurate Potential Energy Surfaces and Beyond: Chemical Reactivity, Binding, Long-Range Interactions, and Spectroscopy. Advances in Physical Chemistry, 2012, 2012, 1-4. Vibrational energy transfer in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.0	9
288	altimg="si20.gif" overflow="scroll"> <mml:mrow><mml:mi mathvariant="normal">N</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow) etqq0<="" td="" tj=""><td>0 0 rgBT /0 2.6</td><td>Overlock 10 Tf</td></mml:mrow)></mml:msup></mml:mrow>	0 0 rgBT /0 2.6	Overlock 10 Tf

mathvariant = "normal" > N < |mml:mrow> < mml:mrow> < mml:mrow> < |mml:mrow> < |m

#	Article	IF	CITATIONS
289	Energy-switching potential energy surface for ground-state <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow> Chemical Physics Letters, 2018, 700, 36-43.</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	> <mark>2.6</mark> > <mml:mr< td=""><td>n>3</td></mml:mr<>	n>3
290	Role of Augmented Basis Sets and Quest for ab Initio Performance/Cost Alternative to Kohn–Sham Density Functional Theory. Journal of Physical Chemistry A, 2020, 124, 126-134.	2.5	9
291	The calculation of dynamic polarizabilities and long-range disperson energy coefficients. Chemical Physics Letters, 1974, 26, 197-199.	2.6	8
292	Are the reactions Li + Na2 and Na + K2 direct or indirect? A dynamics study of semiempirical valence-bond potential-energy surfaces. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 2247.	1.1	8
293	The rational fraction representation of diatomic potentials. Theoretica Chimica Acta, 1987, 71, 459-465.	0.8	8
294	Thermal rate coefficients for the 18O+16O2→18O16O+16O reaction based on a single-valued DMBE potential energy surface for ground-state ozone. Computational and Theoretical Chemistry, 1988, 166, 335-338.	1.5	8
295	Dynamics of the Li + Li2Reaction:Â Coexistence of Statistical and Direct Attributes. The Journal of Physical Chemistry, 1996, 100, 7480-7487.	2.9	8
296	Quasi-ab initio dynamics: a test trajectory study of the H+H2 reaction using energies and gradients based on scaling of the external correlation. Chemical Physics Letters, 1998, 293, 261-269.	2.6	8
297	Topological effects due to conical intersections: A model study of two interacting conical intersections. Journal of Chemical Physics, 1999, 111, 9493-9497.	3.0	8
298	Is there a barrier for the C2 ν insertion reaction in O(1D)+H2? A test dynamics study based on two-valued energy-switching potential energy surfaces. Chemical Physics Letters, 2000, 331, 331-338.	2.6	8
299	Coupled <i>ab initio</i> potential energy surfaces for the two lowest ² A′ electronic states of the C ₂ H molecule. Molecular Physics, 2000, 98, 1925-1938.	1.7	8
300	Vibrational Calculations for the HD2First-Excited Electronic State Using a Coordinate-Transformation Techniqueâ€. Journal of Physical Chemistry A, 2001, 105, 2246-2250.	2.5	8
301	Symmetry Properties of Rovibronic States of anX3Molecule in an Upright Conical Potential. Physical Review Letters, 2004, 93, 243003.	7.8	8
302	Reply to the Comment on "Are Vibrationally Excited Molecules a Clue for the O3Deficit Problem and HOxDilemma in the Middle Atmosphere?― Journal of Physical Chemistry A, 2005, 109, 2700-2702.	2.5	8
303	Dynamics Study of the OH \pm O3Atmospheric Reaction with Both Reactants Vibrationally Excited. Journal of Physical Chemistry A, 2006, 110, 13836-13842.	2.5	8
304	Vibrational Relaxation of Highly Vibrationally Excited O $<$ sub $>$ 3 $<$ /sub $>$ in Collisions with OH. Journal of Physical Chemistry A, 2008, 112, 7238-7243.	2.5	8
305	Photoinduced coupled twisted intramolecular charge transfer and excited-state proton transfer via intermolecular hydrogen bonding: A DFT/TD-DFT study. Chemical Physics Letters, 2014, 610-611, 179-185.	2.6	8
306	Sub-femtosecond quantum dynamics of the strong-field ionization of water to the Xlf $<$ sup>2 $<$ sup>B $<$ sub>1 $<$ fsub> and $\tilde{A}f<$ sup>2 $<$ fsup>A $<$ sub>1 $<$ fsub> states of the cation. Physical Chemistry Chemical Physics, 2015, 17, 6545-6553.	2.8	8

#	Article	IF	CITATIONS
307	Accurate adiabatic potential energy surface for 12A′ state of FH2 based on ab initio data extrapolated to the complete basis set limit. European Physical Journal D, 2015, 69, 1.	1.3	8
308	Global Potential Energy Surface for HO ₂ ⁺ Using the CHIPR Method. Journal of Physical Chemistry A, 2019, 123, 1613-1621.	2.5	8
309	On the Rate Constant for the Association Reaction H + CN + Ar â†' HCN + Ar. Journal of Physical Chemistry A, 1999, 103, 6366-6372.	2.5	7
310	Singularities in the Hamiltonian at electronic degeneracies. Chemical Physics, 2000, 259, 173-179.	1.9	7
311	Vibrational partition functions for atomââ,¬â€œdiatom and atomââ,¬â€œtriatom van der Waals systems. Physical Chemistry Chemical Physics, 2001, 3, 5000-5005.	2.8	7
312	Dynamics and kinetics of the S + HO \langle sub \rangle 2 \langle /sub \rangle reaction: A theoretical study. International Journal of Chemical Kinetics, 2008, 40, 533-540.	1.6	7
313	Ab initio Based DMBE Potential Energy Surface for the Ground Electronic State of the C ₂ H Molecule. Journal of Physical Chemistry A, 2010, 114, 2655-2664.	2.5	7
314	Accurate Study of the Two Lowest Singlet States of HN ₃ : Stationary Structures and Energetics at the MRCI Complete Basis Set Limit. Journal of Physical Chemistry A, 2013, 117, 4044-4050.	2.5	7
315	Subfemtosecond Quantum Nuclear Dynamics in Water Isotopomers. Journal of Physical Chemistry A, 2015, 119, 4856-4863.	2.5	7
316	Accurate ab initio potential for <mml:math altimg="si9.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>HO</mml:mtext></mml:mrow><mm 2018,="" 421-430.<="" 691,="" and="" cbs="" chemical="" curves.="" diatomic="" direct-fit="" energies="" extrapolated="" letters,="" physics="" td=""><td>l:mrow><</td><td>mml:mn>2</td></mm></mml:mrow></mml:mrow></mml:math>	l:mrow><	mml:mn>2
317	Quasiclassical Study of the C(\sup\3\/\sup\P) + NO(X\sup\2\/\sup\i) and O(\sup\3\/\sup\P) + CN(X\sup\2\/\sup\) CO(X\sup\3\/\sup\P) + CN(X\sup\2\/\sup\1\(\sup\2\/\sup\P)\) Collisional Processes on an Accurate DMBE Potential Energy Surface. Journal of Physical Chemistry A, 2019, 123, 7195-7200.	2.5	7
318	The calculation of the octopole dynamic polarizability and of the dipole-octopole contribution to the dispersion energy. Molecular Physics, 1973, 26, 241-242.	1.7	6
319	The dependence of the C6 atom-diatom dispersion energy coefficient on the diatomic vibrational coordinate: A-H2 interactions. Chemical Physics Letters, 1988, 148, 149-157.	2.6	6
320	Curve fitting to a continuous function: A useful tool in theoretical chemistry. Journal of Chemical Education, 1990, 67, 28.	2.3	6
321	Spectral quantization of transition state resonances in collinear Mu + H2 and Mu + D2 collisions. Chemical Physics, 1996, 209, 31-40.	1.9	6
322	Geometric phase effect in isotopomers of X3 systems: Use of a split basis technique for the cone states of HD2. International Journal of Quantum Chemistry, 2000, 80, 454-460.	2.0	6
323	Isotope effect on unimolecular dissociation of MuO2: a classical trajectory study. Physical Chemistry Chemical Physics, 2000, 2, 3583-3589.	2.8	6
324	Dynamics Study of the O2 + HO2 Atmospheric Reaction with Both Reactants Highly Vibrationally Excited. Journal of Physical Chemistry A, 2002, 106, 11911-11916.	2.5	6

#	Article	IF	Citations
325	Ab initio study of the H+ClONO2 reaction. Chemical Physics Letters, 2006, 421, 453-459.	2.6	6
326	Direct Dynamics Simulation of Reaction Between F2 and Ethylene. Chinese Journal of Chemical Physics, 2007, 20, 109-112.	1.3	6
327	Adiabatic quantum dynamics calculations of the rate constant for the N+NHâ†'N2+H reaction. Chemical Physics Letters, 2010, 497, 159-162.	2.6	6
328	On carbon dioxide capture: An accurate ab initio study of the Li3N+CO2 insertion reaction. Computational and Theoretical Chemistry, 2014, 1036, 61-71.	2.5	6
329	Exploring the Utility of Many-Body Expansions: A Consistent Set of Accurate Potentials for the Lowest Quartet and Doublet States of the Azide Radical with Revisited Dynamics. Journal of Physical Chemistry A, 2014, 118, 10127-10133.	2.5	6
330	Single-Sheeted Double Many-Body Expansion Potential Energy Surface for Ground-State ClO ₂ . Journal of Physical Chemistry A, 2014, 118, 4851-4862.	2. 5	6
331	Quantum dynamics study of the X+O2 reactions on the CHIPR potential energy surface: X=Mu, H, D, T. Chemical Physics Letters, 2015, 638, 61-65.	2.6	6
332	Multiple conical intersections in small linear parameter Jahn–Teller systems: the DMBE potential energy surface of ground-state C ₃ revisited. Physical Chemistry Chemical Physics, 2018, 20, 10319-10331.	2.8	6
333	A trajectory surface hopping study of <mml:math altimg="si45.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>N</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	wy <mml: ><mml:me< td=""><td>lmn>2o>+</td></mml:me<></mml: 	lmn>2o>+
334	CHAPTER 17. Putting Together the Pieces: A Global Description of Valence and Long-Range Forces via Combined Hyperbolic Inverse Power Representation of the Potential Energy Surface. RSC Theoretical and Computational Chemistry Series, 0, , 408-445.	0.7	6
335	Quasiclassical trajectory study of the Li + Cs2reaction. Molecular Physics, 1995, 84, 957-969.	1.7	5
336	Three-Dimensional Time-Dependent Wavepacket Calculation of the Transition State Resonances for MuH2and MuD2:Â Resonance Energies and Widths. The Journal of Physical Chemistry, 1996, 100, 14598-14601.	2.9	5
337	Conical intersections between the two lowest $1A\hat{a}\in^2$ potential energy surfaces of HCN, and the role of three-body effects. Journal of Chemical Physics, 1997, 107, 10014-10028.	3.0	5
338	Adiabatic-diabatic transformations for molecular systems: a model study of two interacting conical intersections. Molecular Physics, 1999, 97, 1185-1191.	1.7	5
339	Classical canonical transformation theory as a tool to describe multidimensional tunnelling in reactive scattering. Hopping method revisited and collinear H+H2 exchange reaction near the classical threshold. Physical Chemistry Chemical Physics, 1999, 1, 1071-1079.	2.8	5
340	Geometric phase effect at N -fold electronic degeneracies in Jahn-Teller systems. International Journal of Quantum Chemistry, 2004, 99, 385-392.	2.0	5
341	Dynamics study of ClO + O2collisions and their role in the chemistry of stratospheric ozone. Physical Chemistry Chemical Physics, 2004, 6, 2179-2184.	2.8	5
342	Geometric phase effect in the vibrational states of tripletH3+. Physical Review A, 2008, 77, .	2.5	5

#	Article	lF	CITATIONS
343	Carbon Dioxide Capture with the Ozone-like Polynitrogen Molecule Li ₃ N ₃ . Journal of Physical Chemistry A, 2014, 118, 12256-12261.	2.5	5
344	On the ferryl catalyst: Electronic structure and optimized ab initio geometry. Chemical Physics Letters, 2014, 595-596, 175-179.	2.6	5
345	Is HO3â^' multiple-minimum and floppy? Covalent to van der Waals isomerization and bond rupture of a peculiar anion. Physical Chemistry Chemical Physics, 2014, 16, 16997-17007.	2.8	5
346	Difficulties and Virtues in Assessing the Potential Energy Surfaces of Carbon Clusters via DMBE Theory: Stationary Points of C _{\hat{l}°} (\hat{l}° = $2\hat{a}$ €"10) at the Focal Point. Journal of Physical Chemistry A, 2019, 123, 3121-3130.	2.5	5
347	Accurate Potential Energy Surface for Quartet State HN ₂ and Interplay of N(⁴ <i>SUp>(i>S</i>) + NH(<i>XÌf </i> ³ Σ [–]) versus H + N ₂ (<i>A</i> ³ Σ _u ⁺) Reactions. Journal of Physical Chemistry A. 2020. 124. 781-789.	2.5	5
348	Modelling adiabatic cusps in via 2 $ ilde{A}$ — 2 diabatic matrix. Molecular Physics, 2021, 119, e1904157.	1.7	5
349	Non-Bonding Atom-Diatom Potentials via A Double Many-Body Expansion Method. , 1987, , 357-371.		5
350	From six to eight Î-electron bare rings of group-XIV elements and beyond: can planarity be deciphered from the "quasi-molecules―they embed?. Physical Chemistry Chemical Physics, 2022, 24, 8488-8507.	2.8	5
351	Optimized Structural Data at the Complete Basis Set Limit via Successive Quadratic Minimizations. Journal of Physical Chemistry A, 2021, 125, 10657-10666.	2.5	5
352	On the use of the rotational isomeric state approximation in studies of internal rotation. Canadian Journal of Chemistry, 1983, 61, 163-170.	1.1	4
353	Quantum and semiclassical analysis of spin-change cross sections for the alkali diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 3113-3122.	1.5	4
354	Incorporation of tunneling effects in classical trajectories via a method of canonical transformations. Chemical Physics Letters, 1996, 259, 605-610.	2.6	4
355	Six-Dimensional Energy-Switching Potential Energy Surface for HeHCN. Journal of Physical Chemistry A, 2002, 106, 9338-9344.	2.5	4
356	Ro-Vibrational States of Triplet H2D+â€. Journal of Physical Chemistry A, 2006, 110, 5499-5503.	2.5	4
357	Theoretical study of the O + HSO reaction. International Journal of Chemical Kinetics, 2009, 41, 455-462.	1.6	4
358	Orbitals of the dipositronium. Chemical Physics Letters, 2014, 610-611, 167-172.	2.6	4
359	On dipositronium and molecular hydrogen: similarities and differences. European Physical Journal D, 2015, 69, 1.	1.3	4
360	Mapping the HO3 ground state potential energy surface with DFT: Can we reproduce the MRCI+Q/CBS data?. Chemical Physics Letters, 2015, 620, 61-66.	2.6	4

#	Article	IF	Citations
361	Effect of Initial Vibrational-State Excitation on Subfemtosecond Photodynamics of Water. Journal of Physical Chemistry A, 2015, 119, 12367-12375.	2.5	4
362	MP2 versus density functional theory calculations in CO 2 $\hat{a} \in s$ equestration reactions with anions: Basis set extrapolation and solvent effects. International Journal of Quantum Chemistry, 2021, 121, e26583.	2.0	4
363	Diffusion coefficient of hydrogen atoms and molecules from accurate spherically averaged H-H2 interaction potentials. Molecular Physics, 1982, 45, 317-329.	1.7	3
364	An analytical expression for the minimum of the effective potential of a rotatingâ€"vibrating diatomic molecule. Chemical Physics Letters, 1982, 89, 368-370.	2.6	3
365	On the third virial coefficient for the alkali metal vapours. Chemical Physics Letters, 1985, 113, 192-196.	2.6	3
366	On the stability of a hydrogen-like atom: The particle in a spherical box revisited. Journal of Chemical Education, 1986, 63, 485.	2.3	3
367	Ab initiostudy of the He(1S)-Li2(\hat{X}) f ,1 \hat{a} = \hat{a} = \hat{b}	3.3	3
368	Nuclear dynamics in the vicinity of a crossing seam: Vibrational spectrum of HD2 revisited. International Journal of Quantum Chemistry, 2001, 83, 279-285.	2.0	3
369	Permutational Symmetry and the Role of Nuclear Spin in the Vibrational Spectra of Molecules in Doubly Degenerate Electronic States: The Trimers of 2 S Atoms. Advances in Chemical Physics, 2003, , 659-741.	0.3	3
370	Ab Initio Study of Hydrazinyl Radical: Toward a DMBE Potential Energy Surface. Journal of Physical Chemistry A, 2010, 114, 11663-11669.	2.5	3
371	Dynamics study of the atmospheric reaction involving vibrationally excited O3 with OH. Physical Chemistry Chemical Physics, 2010, 12, 11362.	2.8	3
372	A study of the geometrical phase effect on scattering processes: Validity of the extended-Longuet–Higgins formalism for a four-fold Jahn–Teller type model system. Chemical Physics, 2011, 389, 81-87.	1.9	3
373	Quasiclassical trajectory study of the rotational distribution for the O+NO($\langle i \rangle v \langle i \rangle = 0$) fundamental vibrational excitation. International Journal of Chemical Kinetics, 2011, 43, 345-352.	1.6	3
374	Silane Radical Cation: A Theoretical Account on the Jahn–Teller Effect at a Triple Degeneracy. Journal of Physical Chemistry A, 2013, 117, 8794-8805.	2.5	3
375	Accurate DMBE potential-energy surface for CNO(2 <i>A</i> $ i>a$ <i) 034303.<="" 154,="" 2021,="" and="" c(3p)+no="" chemical="" coefficients="" collisions.="" in="" journal="" of="" physics,="" rate="" td=""><td>3.0</td><td>3</td></i)>	3.0	3
376	Quantum and Classical Dynamics of the N(² D) + N ₂ Reaction on Its Ground Doublet State N ₃ (1 ² A″) Potential Energy Surface. Journal of Physical Chemistry A, 2021, 125, 5650-5660.	2.5	3
377	On the solvation model and infrared spectroscopy of liquid water. Chemical Physics Letters, 2022, 801, 139739.	2.6	3
378	A realistic HFACE potential function for Kr2 (X1 \hat{l} £g+) from spectroscopic and thermophysical data. Computational and Theoretical Chemistry, 1988, 166, 187-192.	1.5	2

#	Article	IF	CITATIONS
379	Virial theorem decomposition of potential-energy surfaces. Analysis of the double many-body expansion ground-state surface of Li3. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3885.	1.7	2
380	Toward a Single-Valued DMBE Potential Energy Surface for CHNO(3A). 1. Diatomic Fragments. Journal of Physical Chemistry A, 1997, 101, 4828-4834.	2.5	2
381	Mode Specificity Study in Unimolecular Dissociation of Nonrotating H2O, DHO, and MuHO Molecules. Journal of Physical Chemistry A, 1999, 103, 10907-10914.	2.5	2
382	Nascent versus $\hat{a} \in \infty$ Steady-State $\hat{a} \in \mathbb{R}$ Rovibrational Distributions in the Products of the O(3P) + O3(XÌf1A) Reaction. Journal of Physical Chemistry A, 2003, 107, 10926-10932.	2.5	2
383	Vibrational relaxation of highly excited HO2 in collisions with O2. Chemical Physics Letters, 2005, 402, 399-407.	2.6	2
384	Manifestation of external field effect in time-resolved photo-dissociation dynamics of LiF. Chinese Physics B, 2013, 22, 073303.	1.4	2
385	Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects?. Chemical Physics Letters, 2016, 653, 47-53.	2.6	2
386	Optimal basis sets for CBS extrapolation of the correlation energy: oV oV(<i>x</i> + <i>d</i>)Z. Journal of Chemical Physics, 2019, 150, 154106.	3.0	2
387	Binding of muonated hydrogen molecules and Born–Oppenheimer approximation revisited. Canadian Journal of Physics, 2020, 98, 379-384.	1.1	2
388	Dynamical calculations of O(³ P) + OH(² Î) reaction on the CHIPR potential energy surface using the fully coupled time-dependent wave-packet approach in hyperspherical coordinates. Physical Chemistry Chemical Physics, 2021, 23, 21784-21796.	2.8	2
389	Quasiclassical Trajectory Study of the Si + SH Reaction on an Accurate Double Many-Body Expansion Potential Energy Surface. Journal of Physical Chemistry A, 2022, 126, 3555-3568.	2.5	2
390	The use of vicinal Hî—,H coupling constants in rotational isomerism studies, I. Journal of Magnetic Resonance, 1981, 43, 28-39.	0.5	1
391	Dipole moments and conformation energies for substituted ethanes. Canadian Journal of Chemistry, 1982, 60, 2049-2056.	1.1	1
392	Analytical potential energy surfaces for alkali dihalide molecules based on the diatomics-in-molecules formalism. Application to LiF2. Chemical Physics Letters, 1994, 227, 133-142.	2.6	1
393	Dimensionality effects on transition state resonances for H+DH and D+HD reactive collisions. Computational and Theoretical Chemistry, 1999, 493, 81-88.	1.5	1
394	Comparative trajectory surface hopping study for the Li+Li2(X1Σg+), Na+Li2(X1Σg+) and Li+Na2(X1Σg+) dissociation reactions. Physical Chemistry Chemical Physics, 1999, 1, 2657-2665.	2.8	1
395	First principles calculation of the potential energy surface for the lowest-quartet state of H3 and modelling by the double many-body expansion method. Physical Chemistry Chemical Physics, 2000, 2, 2471-2480.	2.8	1
396	Li + Li2 Dissociation Reaction Using the Self-Consistent Potential and Trajectory Surface Hopping Methods. Journal of Physical Chemistry A, 2002, 106, 3673-3680.	2.5	1

#	Article	lF	CITATIONS
397	Dynamics of the O + ClO Reaction: Reactive and Vibrational Relaxation Processes. Journal of Physical Chemistry A, 2014, 118, 12120-12129.	2.5	1
398	Theoretical investigation of vibrational relaxation of highly excited O3 in collisions with HO2. RSC Advances, 2014, 4, 9866.	3.6	1
399	Similarity measures between excited singlet and triplet electron densities in linear acenes: an application to singlet fission. Molecular Physics, 2016, 114, 3650-3657.	1.7	1
400	Optimal diffuse augmented atomic basis sets for extrapolation of the correlation energy. International Journal of Quantum Chemistry, 2020, 120, e26135.	2.0	1
401	altimg="si40.svg"> <mml:mrow><mml:mi mathvariant="normal">Li</mml:mi><mml:mo linebreak="badbreak">+</mml:mo><mml:mi mathvariant="normal">HCl</mml:mi><mml:mo>â†'</mml:mo><mml:mi mathvariant="normal">LiCl</mml:mi><mml:mo>athvariant="normal">LiCl<mml:mo>athvariant="normal">LiCl<mml:mo>athvariant="normal">LiCl<mml:mo>athvariant="normal">LiCl<mml:mo>athvariant="normal">LiCl<mml:mo>athvariant="normal">LiCl<mml:mo>athvariant="normal">LiCl<td>2.6</td><td>1</td></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mrow>	2.6	1
402	mathvariant="normal">H reaction. Chemical Physics Letters, 2021, On the calculation of the relativistic long-range coefficient W4. Chemical Physics Letters, 1974, 27, 433-435.	2.6	0
403	On the interaction of two conical intersections: the H6 system. Chemical Physics Letters, 2000, 331, 285-289.	2.6	0
404	Kinetics and dynamics of O + OClO reaction in a modified many-body expansion potential energy surface for ClO3. International Journal of Chemical Kinetics, 2007, 39, 422-430.	1.6	0
405	18th European Conference on Dynamics of Molecular Systems. Physica Scripta, 2011, 84, 028101.	2.5	0
406	Dynamics study of a three-fold pseudo-Jahn–Teller system using the extended Longuet–Higgins formalism. Journal of Chemical Sciences, 2012, 124, 115-120.	1.5	0
407	Rescattering of recolliding electron and low energy structure in few-cycle mid-infrared strong laser field: A 3D-TDSE study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1133-1138.	2.1	0
408	Effect of initial vibrational excitation on the methane cation sub-femtosecond photodynamics. Molecular Physics, 2020, 118, e1752403.	1.7	0
409	On the Geometric Phase Effect in Jahn-Teller Systems. , 2003, , 707-766.		O