Markus H Gräler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/789950/publications.pdf

Version: 2024-02-01

92 papers 6,864 citations

39 h-index 80 g-index

95 all docs 95
docs citations

95 times ranked

8483 citing authors

#	Article	IF	CITATIONS
1	Altered Serum Phospholipids in Atopic Dermatitis and Association with Clinical Status. JID Innovations, 2022, 2, 100092.	2.4	5
2	$\hat{A^2}$ -Induced Alterations in Membrane Lipids Occur before Synaptic Loss Appears. International Journal of Molecular Sciences, 2022, 23, 2300.	4.1	0
3	Development and validation of a QTrap method for sensitive quantification of sphingosine 1â€phosphate. Biomedical Chromatography, 2021, 35, e5004.	1.7	1
4	Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cellular Signalling, 2021, 78, 109849.	3.6	8
5	Validation of a monoclonal antibody directed against the human sphingosine 1-phosphate receptor type 1. Journal of Immunological Methods, 2021, 490, 112953.	1.4	2
6	Serum sphingosineâ€1â€phosphate is elevated in atopic dermatitis and associated with severity. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2592-2595.	5.7	12
7	The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radical Biology and Medicine, 2021, 167, 66-80.	2.9	40
8	Barrier maintenance by S1P during inflammation and sepsis. Tissue Barriers, 2021, 9, 1940069.	3.2	5
9	Sphingosine-1-phosphate: A mediator of the ARB-MI paradox?. International Journal of Cardiology, 2021, 333, 40-42.	1.7	2
10	Targeted delivery of a phosphoinositide 3â€kinase γ inhibitor to restore organ function in sepsis. EMBO Molecular Medicine, 2021, 13, e14436.	6.9	14
11	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C	verlock 10) Tf 50 342 To
12	Sphingosine-1 Phosphate Lyase Regulates Sensitivity of Pancreatic Beta-Cells to Lipotoxicity. International Journal of Molecular Sciences, 2021, 22, 10893.	4.1	3
13	Long-Chain and Very Long-Chain Ceramides Mediate Doxorubicin-Induced Toxicity and Fibrosis. International Journal of Molecular Sciences, 2021, 22, 11852.	4.1	4
14	Intracellularly Released Cholesterol from Polymer-Based Delivery Systems Alters Cellular Responses to Pneumolysin and Promotes Cell Survival. Metabolites, 2021, 11, 821.	2.9	3
15	Activation of Sphingomyelinase-Ceramide-Pathway in COVID-19 Purposes Its Inhibition for Therapeutic Strategies. Frontiers in Immunology, 2021, 12, 784989.	4.8	15
16	Erythrocytes increase endogenous sphingosine 1-phosphate levels as an adaptive response to SARS-CoV-2 infection. Clinical Science, 2021, 135, 2781-2791.	4.3	11
17	The role of sphingosine-1-phosphate signaling in HSV-1-infected human umbilical vein endothelial cells. Virus Research, 2020, 276, 197835.	2.2	10
18	S1P lyase inhibition protects against sepsis by promoting disease tolerance via the S1P/S1PR3 axis. EBioMedicine, 2020, 58, 102898.	6.1	17

#	Article	IF	CITATIONS
19	Flotillin-Dependent Membrane Microdomains Are Required for Functional Phagolysosomes against Fungal Infections. Cell Reports, 2020, 32, 108017.	6.4	39
20	Lipid metabolic signatures deviate in sepsis survivors compared to non-survivors. Computational and Structural Biotechnology Journal, 2020, 18, 3678-3691.	4.1	15
21	Identification of Brain-Specific Treatment Effects in NPC1 Disease by Focusing on Cellular and Molecular Changes of Sphingosine-1-Phosphate Metabolism. International Journal of Molecular Sciences, 2020, 21, 4502.	4.1	5
22	Determinants of Serum- and Plasma Sphingosine-1-Phosphate Concentrations in a Healthy Study Group. TH Open, 2020, 04, e12-e19.	1.4	16
23	Inflammatory Conditions Disrupt Constitutive Endothelial Cell Barrier Stabilization by Alleviating Autonomous Secretion of Sphingosine 1-Phosphate. Cells, 2020, 9, 928.	4.1	18
24	Sphingolipidomics in Translational Sepsis Research–Biomedical Considerations and Perspectives. Frontiers in Medicine, 2020, 7, 616578.	2.6	2
25	Targeting defective sphingosine kinase 1 in Niemann–Pick type C disease with an activator mitigates cholesterol accumulation. Journal of Biological Chemistry, 2020, 295, 9121-9133.	3.4	19
26	Potent antiâ€inflammatory properties of HDL in vascular smooth muscle cells mediated by HDLâ€S1P and their impairment in coronary artery disease due to lower HDLâ€S1P: a new aspect of HDL dysfunction and its therapy. FASEB Journal, 2019, 33, 1482-1495.	0.5	38
27	A therapy with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone restores splenic cholesterol homeostasis in Niemann-pick disease type C1. Lipids in Health and Disease, 2019, 18, 146.	3.0	14
28	Regulation of ABCA1-mediated cholesterol efflux by sphingosine-1-phosphate signaling in macrophages. Journal of Lipid Research, 2019, 60, 506-515.	4.2	32
29	Neural sphingosine 1â€phosphate accumulation activates microglia and links impaired autophagy and inflammation. Glia, 2019, 67, 1859-1872.	4.9	58
30	Loss of sphingosine 1-phosphate (S1P) in septic shock is predominantly caused by decreased levels of high-density lipoproteins (HDL). Journal of Intensive Care, 2019, 7, 23.	2.9	37
31	Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss. Nature Medicine, 2018, 24, 667-678.	30.7	93
32	Release of Platelet-Derived Sphingosine-1-Phosphate Involves Multidrug Resistance Protein 4 (MRP4/ABCC4) and Is Inhibited by Statins. Thrombosis and Haemostasis, 2018, 118, 132-142.	3.4	32
33	Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts. Medical Microbiology and Immunology, 2018, 207, 227-242.	4.8	9
34	Acid Sphingomyelinase Inhibition Stabilizes Hepatic Ceramide Content and Improves Hepatic Biotransformation Capacity in a Murine Model of Polymicrobial Sepsis. International Journal of Molecular Sciences, 2018, 19, 3163.	4.1	7
35	Ceramide synthase 2 facilitates S1Pâ€dependent egress of thymocytes into the circulation in mice. European Journal of Immunology, 2017, 47, 677-684.	2.9	14
36	Tumor specific regulatory T cells in the bone marrow of breast cancer patients selectively upregulate the emigration receptor S1P1. Cancer Immunology, Immunotherapy, 2017, 66, 593-603.	4.2	19

#	Article	IF	Citations
37	SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production. Autophagy, 2017, 13, 885-899.	9.1	85
38	Sphingosine-1-Phosphate. Shock, 2017, 47, 666-672.	2.1	46
39	Acid Sphingomyelinase Inhibition Prevents Development of Sepsis Sequelae in the Murine Liver. Scientific Reports, 2017, 7, 12348.	3.3	22
40	Plasma sphingosine-1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. Journal of Molecular and Cellular Cardiology, 2017, 110, 35-37.	1.9	46
41	Hepatocyte nuclear factor 1A deficiency causes hemolytic anemia in mice by altering erythrocyte sphingolipid homeostasis. Blood, 2017, 130, 2786-2798.	1.4	10
42	Adjustment of Dysregulated Ceramide Metabolism in a Murine Model of Sepsis-Induced Cardiac Dysfunction. International Journal of Molecular Sciences, 2017, 18, 839.	4.1	23
43	Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis. Molecular Medicine, 2016, 22, 412-423.	4.4	26
44	Modulating sphingosine 1â€phosphate signaling with DOP or FTY720 alleviates vascular and immune defects in mouse sepsis. European Journal of Immunology, 2016, 46, 2767-2777.	2.9	37
45	Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism. Scientific Reports, 2016, 6, 37064.	3.3	43
46	Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nature Communications, 2015, 6, 7796.	12.8	131
47	Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nature Communications, 2015, 6, 6416.	12.8	78
48	Defects of High-Density Lipoproteins in Coronary Artery Disease Caused by Low Sphingosine-1-Phosphate Content. Journal of the American College of Cardiology, 2015, 66, 1470-1485.	2.8	105
49	Sphingosine 1-Phosphate in Blood: Function, Metabolism, and Fate. Cellular Physiology and Biochemistry, 2014, 34, 158-171.	1.6	84
50	Evaluating Sphingosine and its Analogues as Potential Alternatives for Aggressive Lymphoma Treatment. Cellular Physiology and Biochemistry, 2014, 34, 1686-1700.	1.6	9
51	HDL-Bound Sphingosine 1-Phosphate (S1P) Predicts the Severity of Coronary Artery Atherosclerosis. Cellular Physiology and Biochemistry, 2014, 34, 172-184.	1.6	71
52	Deficiency of Sphingosine-1-phosphate Lyase Impairs Lysosomal Metabolism of the Amyloid Precursor Protein. Journal of Biological Chemistry, 2014, 289, 16761-16772.	3.4	50
53	Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 2013, 501, 421-425.	27.8	437
54	Quantification of Sphingosine-1-Phosphate and Related Sphingolipids by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Methods in Molecular Biology, 2012, 874, 33-44.	0.9	35

#	Article	IF	Citations
55	Immune Regulation by Sphingosine 1-Phosphate and Its Receptors. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 3-12.	2.3	20
56	The role of sphingosine 1-phosphate in immunity and sepsis. American Journal of Clinical and Experimental Immunology, 2012, 1, 90-100.	0.2	10
57	Sphingosineâ€1â€phospate receptor 4 (S1P ₄) deficiency profoundly affects dendritic cell function and T _H 17â€cell differentiation in a murine model. FASEB Journal, 2011, 25, 4024-4036.	0.5	104
58	Local Inactivation of Sphingosine 1-Phosphate in Lymph Nodes Induces Lymphopenia. Journal of Immunology, 2011, 186, 3432-3440.	0.8	22
59	Sphingosine-1-Phosphate Receptor 3 Promotes Recruitment of Monocyte/Macrophages in Inflammation and Atherosclerosis. Circulation Research, 2011, 108, 314-323.	4.5	208
60	Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Research in Cardiology, 2010, 105, 821-832.	5.9	174
61	Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1â€phosphate. Journal of Cellular Biochemistry, 2010, 109, 1232-1243.	2.6	122
62	Down-regulation of S1P1 Receptor Surface Expression by Protein Kinase C Inhibition. Journal of Biological Chemistry, 2010, 285, 6298-6307.	3.4	16
63	Targeting Sphingosine 1-phosphate (S1P) Levels and S1P Receptor Functions for Therapeutic Immune Interventions. Cellular Physiology and Biochemistry, 2010, 26, 79-86.	1.6	47
64	Redistribution of Sphingosine 1-Phosphate by Sphingosine Kinase 2 Contributes to Lymphopenia. Journal of Immunology, 2010, 184, 4133-4142.	0.8	68
65	Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P ₄ . FASEB Journal, 2010, 24, 4701-4710.	0.5	75
66	Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosineâ€1â€phosphate receptor S1P ₄ . FASEB Journal, 2010, 24, 4701-4710.	0.5	10
67	Accumulation of Fingolimod (FTY720) in Lymphoid Tissues Contributes to Prolonged Efficacy. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 963-969.	2.5	48
68	Discontinued Postnatal Thymocyte Development in Sphingosine 1-Phosphate-Lyase-Deficient Mice. Journal of Immunology, 2009, 183, 4292-4301.	0.8	53
69	S1Pâ€lyase independent clearance of extracellular sphingosine 1â€phosphate after dephosphorylation and cellular uptake. Journal of Cellular Biochemistry, 2008, 104, 756-772.	2.6	64
70	Selective activation of G alpha i mediated signalling of S1P3 by FTY720-phosphate. Cellular Signalling, 2008, 20, 1125-1133.	3.6	42
71	Distinctive T Cell-suppressive Signals from Nuclearized Type 1 Sphingosine 1-Phosphate G Protein-coupled Receptors. Journal of Biological Chemistry, 2007, 282, 1964-1972.	3.4	34
72	Erythrocytes store and release sphingosine 1â€phosphate in blood. FASEB Journal, 2007, 21, 1202-1209.	0.5	334

#	Article	IF	Citations
73	Comparative quantification of sphingolipids and analogs in biological samples by high-performance liquid chromatography after chloroform extraction. Analytical Biochemistry, 2006, 358, 239-246.	2.4	41
74	Type 4 sphingosine 1â€phosphate G proteinâ€coupled receptor (S1P 4) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration. FASEB Journal, 2005, 19, 1731-1733.	0.5	142
75	Immunological Effects of Transgenic Constitutive Expression of the Type 1 Sphingosine 1-Phosphate Receptor by Mouse Lymphocytes. Journal of Immunology, 2005, 174, 1997-2003.	0.8	60
76	Physiological sphingosine 1â€phosphate requirement for optimal activity of mouse CD4 + 25 + regulatory T Cells. FASEB Journal, 2004, 18, 1043-1045.	0.5	40
77	The immunosuppressant FTY720 downâ€regulates sphingosine 1â€phosphate G proteinâ€coupled receptors. FASEB Journal, 2004, 18, 551-553.	0.5	499
78	Sphingosine 1-phosphate and its type 1 G protein-coupled receptor: trophic support and functional regulation of T Lymphocytes. Journal of Leukocyte Biology, 2004, 76, 30-35.	3.3	32
79	Sphingosine 1-phosphate and its G protein-coupled receptors constitute a multifunctional immunoregulatory system. Journal of Cellular Biochemistry, 2004, 92, 1104-1114.	2.6	73
80	An IgM-kappa rat monoclonal antibody specific for the type 1 sphingosine 1-phosphate G protein-coupled receptor with antagonist and agonist activities. Immunology Letters, 2004, 93, 63-69.	2.5	15
81	The sphingosine 1-phosphate receptor S1P4regulates cell shape and motility via coupling to Giand G12/13. Journal of Cellular Biochemistry, 2003, 89, 507-519.	2.6	117
82	Protein Kinase C ϵ Dependence of the Recovery from Down-regulation of S1P1 G Protein-coupled Receptors of T Lymphocytes. Journal of Biological Chemistry, 2003, 278, 27737-27741.	3.4	31
83	Transduction of Multiple Effects of Sphingosine 1-Phosphate (S1P) on T Cell Functions by the S1P1 G Protein-Coupled Receptor. Journal of Immunology, 2003, 171, 3500-3507.	0.8	99
84	Cutting Edge: Suppression of T Cell Chemotaxis by Sphingosine 1-Phosphate. Journal of Immunology, 2002, 169, 4084-4087.	0.8	123
85	Activationâ€regulated expression and chemotactic function of sphingosine 1â€phosphate receptors in mouse splenic T cells. FASEB Journal, 2002, 16, 1874-1878.	0.5	202
86	Lysophospholipid mediators of immunity and neoplasia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 161-167.	2.4	58
87	Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 168-174.	2.4	162
88	Lysophospholipid regulation of mononuclear phagocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 175-177.	2.4	55
89	Lysophospholipid Growth Factors and Their G Protein-Coupled Receptors in Immunity, Coronary Artery Disease, and Cancer. Scientific World Journal, The, 2002, 2, 324-338.	2.1	30
90	Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood, 2000, 95, 2624-2629.	1.4	0

#	Article	lF	CITATIONS
91	A Lymphoid Tissue-Specific Receptor, EDG6, with Potential Immune Modulatory Functions Mediated by Extracellular Lysophospholipids. Current Topics in Microbiology and Immunology, 1999, 246, 131-137.	1.1	21
92	EDG6, a Novel G-Protein-Coupled Receptor Related to Receptors for Bioactive Lysophospholipids, Is Specifically Expressed in Lymphoid Tissue. Genomics, 1998, 53, 164-169.	2.9	222