Manuela Maria Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7899440/publications.pdf

Version: 2024-02-01

41 papers 1,267 citations

361296 20 h-index 360920 35 g-index

42 all docs 42 docs citations

42 times ranked 1662 citing authors

#	Article	IF	CITATIONS
1	Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar. Journal of Environmental Chemical Engineering, 2022, 10, 106977.	3.3	20
2	Influence of temperature on the subcritical water extraction of Actinidia arguta leaves: A screening of pro-healthy compounds. Sustainable Chemistry and Pharmacy, 2022, 25, 100593.	1.6	8
3	New insights of phytochemical profile and in vitro antioxidant and neuroprotective activities from optimized extract of Horned Melon fruit. Journal of Food Measurement and Characterization, 2022, 16, 1847-1858.	1.6	4
4	Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects. Applied Sciences (Switzerland), 2022, 12, 1763.	1.3	3
5	Increasing the added value of vine-canes as a sustainable source of phenolic compounds: A review. Science of the Total Environment, 2022, 830, 154600.	3.9	11
6	Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology Approach. Antioxidants, 2022, 11, 763.	2.2	17
7	Electro-Fenton degradation of a ternary pharmaceutical mixture and its application in the regeneration of spent biochar. Journal of Electroanalytical Chemistry, 2021, 886, 115135.	1.9	19
8	Salicornia ramosissima Bioactive Composition and Safety: Eco-Friendly Extractions Approach (Microwave-Assisted Extraction vs. Conventional Maceration). Applied Sciences (Switzerland), 2021, 11, 4744.	1.3	22
9	A Three-Dimensional Electrochemical Process for the Removal of Carbamazepine. Applied Sciences (Switzerland), 2021, 11, 6432.	1.3	5
10	Occurrence of pesticides and environmental contaminants in vineyards: Case study of Portuguese grapevine canes. Science of the Total Environment, 2021, 791, 148395.	3.9	16
11	Production of ethyl levulinate fuel bioadditive from 5-hydroxymethylfurfural over sulfonic acid functionalized biochar catalysts. Fuel, 2021, 303, 121227.	3.4	28
12	Subcritical Water Extraction of Phenolic Compounds from Vineyard Pruning Residues: Evaluation of Chemical Composition and Bioactive Properties. , $2021, 6, .$		3
13	Green and Sustainable Extraction of Bioactive Compounds from Salicornia ramosissimaÂ., 2021, 6, .		O
14	Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis) Tj ETQq0 0 0 rg	;BT/gverlo	ock ₂₈ 0 Tf 50 2
15	Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules, 2020, 25, 2969.	1.7	17
16	Vine-Canes Valorisation: Ultrasound-Assisted Extraction from Lab to Pilot Scale. Molecules, 2020, 25, 1739.	1.7	26
17	Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresource Technology, 2019, 292, 121973.	4.8	44
18	Evaluation of the impact of pre-treatment and extraction conditions on the polyphenolic profile and antioxidant activity of Belgium apple wood. European Food Research and Technology, 2019, 245, 2565-2578.	1.6	11

#	Article	IF	CITATIONS
19	<i>Dalbergia ecastaphyllum</i> leaf extracts: <i>in vitro</i> inhibitory potential against enzymes related to metabolic syndrome, inflammation and neurodegenerative diseases. Acta Scientiarum - Biological Sciences, 2019, 41, e46622.	0.3	1
20	Phenolic profile by HPLC-MS, biological potential, and nutritional value of a promising food: Monofloral bee pollen. Journal of Food Biochemistry, 2018, 42, e12536.	1.2	34
21	Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Science of the Total Environment, 2018, 634, 831-842.	3.9	81
22	Microwaveâ€assisted extraction of phenolic compounds from <scp><i>Morus nigra</i></scp> leaves: optimization and characterization of the antioxidant activity and phenolic composition. Journal of Chemical Technology and Biotechnology, 2018, 93, 1684-1693.	1.6	35
23	Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). Journal of Supercritical Fluids, 2018, 138, 200-206.	1.6	37
24	Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Industrial Crops and Products, 2018, 111, 579-589.	2.5	74
25	Antioxidant, photoprotective and inhibitory activity of tyrosinase in extracts of Dalbergia ecastaphyllum. PLoS ONE, 2018, 13, e0207510.	1.1	17
26	A multivariate approach based on physicochemical parameters and biological potential for the botanical and geographical discrimination of Brazilian bee pollen. Food Bioscience, 2018, 25, 91-110.	2.0	42
27	An Insight on Saltingâ€out Assisted Liquid–Liquid Extraction for Phytoanalysis. Phytochemical Analysis, 2017, 28, 297-304.	1.2	10
28	Techniques for Extraction of Brewer's Spent Grain Polyphenols: a Review. Food and Bioprocess Technology, 2017, 10, 1192-1209.	2.6	62
29	Environment-Friendly Techniques for Extraction of Bioactive Compounds From Fruits. , 2017, , 21-47.		2
30	Brewer's Spent Grains Protects against Oxidative DNA Damage in Saccharomyces cerevisiae. Journal of Agricultural Science, 2017, 9, 12.	0.1	1
31	Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Industrial Crops and Products, 2017, 104, 210-220.	2.5	101
32	Microwaveâ€assisted extraction in goji berries: effect on composition and bioactivity, evaluated through conventional and nonconventional methodologies. International Journal of Food Science and Technology, 2016, 51, 1401-1408.	1.3	8
33	Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innovative Food Science and Emerging Technologies, 2016, 33, 319-326.	2.7	49
34	Proof of Concept of the Electrochemical Sensing of 3â€lodothyronamine (T ₁ AM) and Thyronamine (T ₀ AM). ChemElectroChem, 2014, 1, 1623-1626.	1.7	4
35	Brewer's spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 2013, 54, 382-388.	2.9	106
36	New application of the QuEChERS methodology for the determination of volatile phenols in beverages by liquid chromatography. Journal of Chromatography A, 2013, 1271, 27-32.	1.8	25

#	Article	IF	CITATIONS
37	Chemical sensing of chalcones by voltammetry: trans-Chalcone, cardamonin and xanthohumol. Electrochimica Acta, 2013, 90, 440-444.	2.6	26
38	A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 2012, 403, 1019-1029.	1.9	81
39	Novel Application of Square-Wave Adsorptive-Stripping Voltammetry for the Determination of Xanthohumol in Spent Hops. Journal of Agricultural and Food Chemistry, 2011, 59, 7654-7658.	2.4	12
40	Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography–ultraviolet detection–electrospray ionization mass spectrometry. Journal of Chromatography A, 2008, 1189, 398-405.	1.8	66
41	Antioxidant Properties of Free, Soluble Ester and Insoluble-Bound Phenolic Compounds in Different Barley Varieties and Corresponding Malts. Journal of the Institute of Brewing, 2008, 114, 27-33.	0.8	105