Anuradha Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7898944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cellular and Developmental Biology - Plant, 2007, 43, 51-58.	2.1	78
2	Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Scientia Horticulturae, 2010, 125, 761-766.	3.6	60
3	Status and consolidated list of threatened medicinal plants of India. Genetic Resources and Crop Evolution, 2021, 68, 2235-2263.	1.6	48
4	ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell, Tissue and Organ Culture, 2009, 99, 133-140.	2.3	27
5	Micropropagation and slow growth conservation of cardamom (Elettaria cardamomum Maton). In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 721-729.	2.1	26
6	Conservation of Zingiber germplasm through in vitro rhizome formation. Scientia Horticulturae, 2006, 108, 210-219.	3.6	25
7	Cost-effective in vitro conservation of banana using alternatives of gelling agent (isabgol) and carbon source (market sugar). Acta Physiologiae Plantarum, 2010, 32, 703-711.	2.1	23
8	Phenotypic and molecular studies for genetic stability assessment of cryopreserved banana meristems derived from field and in vitro explant sources. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 345-356.	2.1	21
9	Indian Plant Germplasm on the Global Platter: An Analysis. PLoS ONE, 2015, 10, e0126634.	2.5	16
10	In vitro germination and micropropagation of water chestnut (Trapa sp.). Aquatic Botany, 1995, 51, 135-146.	1.6	13
11	In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. , 2019, , 529-578.		13
12	Seed storage behavior of Musa balbisiana Colla, a wild progenitor of bananas and plantains - Implications for ex situ germplasm conservation. Scientia Horticulturae, 2021, 280, 109926.	3.6	12
13	Cryopreservation of shoot tips of Gentiana kurroo Royle – a critically endangered medicinal plant of India. Plant Cell, Tissue and Organ Culture, 2021, 144, 67-72.	2.3	11
14	Conservation protocols for Ensete glaucum, a crop wild relative of banana, using plant tissue culture and cryopreservation techniques on seeds and zygotic embryos. Plant Cell, Tissue and Organ Culture, 2021, 144, 195-209.	2.3	10
15	Improved protocol for micropropagation of genetically uniform plants of commercially important cardamom (Elettaria cardamomum Maton). In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 409-417.	2.1	10
16	Studies on fruit morphology, nutritional and floral diversity in less-known melons (Cucumis melo L.) of India. Genetic Resources and Crop Evolution, 2021, 68, 1453-1470.	1.6	10
17	Cryoconservation of some wild species of <i>Musa</i> L. Indian Journal of Genetics and Plant Breeding, 2014, 74, 665.	0.5	6
18	Influence of explant types, non-embryogenic synseed and reduced oxygen environment on in vitro conservation of Bacopa monnieri (L.) Wettst. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 851-856	2.1	5

#	Article	IF	CITATIONS
19	A model for integrated approach to germplasm conservation of Asian lotus (Nelumbo nucifera) Tj ETQq1 1 0.784	314 rgBT 1.6	/Oyerlock 1(
20	Management of microbial contaminants in the In Vitro Gene Bank: a case study of taro [Colocasia esculenta (L.) Schott]. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 152-163.	2.1	3
21	Desiccation and freezing tolerance of recalcitrant seeds and embryonic axes of Prunus napaulensis (Ser.) Steud.: a crop wild relative of cherry. Genetic Resources and Crop Evolution, 2022, 69, 1571-1583.	1.6	3
22	Development of a new set of genic SSR markers in the genus Gentiana: in silico mining, characterization and validation. 3 Biotech, 2021, 11, 430.	2.2	1
23	Introduction, Evaluation and Adoption of an Exotic Banana (MusaAAB cv â€~Popoulu') (EC320555) to Kerala, India. Indian Journal of Plant Genetic Resources, 2014, 27, 298.	0.1	1
24	â€~Regional expert consultation on underutilized crops for food and nutrition security in asia and the pacific'. Indian Journal of Plant Genetic Resources, 2018, 31, 194.	0.1	1
25	Cryopreservation and genetic stability assessment of regenerants of the critically endangered medicinal plant Dioscorea deltoidea Wall. ex Griseb. for cryobanking of germplasm. In Vitro Cellular and Developmental Biology - Plant, 0, , 1.	2.1	1
26	Changing Paradigms in Managing Agrobiodiversity through Use: An Appraisal. Indian Journal of Plant Genetic Resources, 2017, 30, 5.	0.1	0
27	Implementation of access to plant genetic resources and benefit sharing (ABS). Indian Journal of Plant Genetic Resources, 2020, 33, 384-386.	0.1	0